С.Н. Бондаренко, к.т.н., доцент, НУГЗУ, М.Н. Мурин, к.т.н., доцент, НУГЗУ

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ РАСПРЕДЕЛИТЕЛЬНОГО ТРУБОПРОВОДА СИСТЕМ ВОДЯНОГО ПОЖАРОТУШЕНИЯ С УЧЕТОМ ЕГО СТОИМОСТИ

Получены аналитические выражения для определения напора в распределительной сети системы водяного пожаротушения в зависимости от количества оросителей, диаметра трубопровода и капитальных затрат на систему пожаротушения.

Ключевые слова: автоматическая система водяного пожаротушения, капитальные затраты, распределительная сеть, диаметр трубопровода.

Постановка проблемы. Опыт обеспечения пожарной безопасности объектов с массовым пребыванием людей показывает, что наиболее эффективным, надежным и безопасным средством противопожарной защиты являются автоматические водяного пожаротушения (АСВП). Для противопожарной защиты помещений торгово-развлекательных центров, театров, аудиторий учебных заведений, как правило, применяют системы поверхностного тушения. При этом вода, подается в защищаемое помещение с распределительных трубопроводов. помощью системы Эффективность применения систем водяного пожаротушения во многом зависит от выбранных параметров распределительной сети. В вопросе проектирования этих систем отсутствует единый подход к формированию распределительных сетей и определения оптимальных параметров трубопроводов. Поэтому, применение аналитических выражений для определения параметров распределительных сетей водяного пожаротушения, позволит решить повышения надежности и эффективности средств и оборудования пожарной безопасности объектов.

Анализ последних исследований и публикаций. Проектированию систем противопожарной защиты посвящены работы [1, 2]. В них вопросы гидравлического расчета систем водяного пожаротушения рассмотрены без учета капитальных затрат на внедрение этих систем. В работе [3] разработана методика определения параметров трубопроводной распределительной сети дренчерной системы водяного пожаротушения.

В этой связи актуальным является получение аналитических выражений, которые связывают параметры распределительной сети систем водяного пожаротушения с капитальными затратами на обустройство АСВП.

Постановка задачи и её решение. Цель исследования повысить эффективность проектирования автоматических систем водяного пожаротушения. Для достижения поставленной цели необходимо получить аналитические выражения, которые позволят производить расчет параметров распределительной сети трубопроводов АСВП в зависимости оросителей, участка количества диаметра трубопровода и капитальных затрат на материалы, с учетов обеспечивают ограничения, которое выполнение условия неразрывности потока в трубопроводе:

$$Dy^2 \ge \frac{4 \cdot Q}{\pi \cdot v \cdot 10^{-3}},$$
 (1)

где Dy — диаметр условного прохода участка распределительного трубопровода; Q — расход огнетушащего вещества (ОТВ) через участок трубопровода; v — скорость движения ОТВ по трубопроводу распределительной сети.

Расход ОТВ из одного оросителя определяется выражением:

$$q = I \cdot S_{OP}$$
,

где I — необходимая интенсивность подачи ОТВ; S_{OP} — площадь, защищаемая одним оросителем.

Напор в распределительной сети, определяется следующим выражением [4]:

$$H_B = \left(\frac{q}{k}\right)^2 + 6.05 \cdot 10^5 \cdot \frac{(q \cdot n)^{1.85}}{C^{1.85} \cdot Dy^{4.87}} \cdot L, \qquad (2)$$

где k — коэффициент расхода через ороситель; C — константа, зависящая от типа и состояния трубы (для стальных труб C=120); n — количество оросителей, размещенных на участке трубопровода; L — длина участка.

Капитальные затраты на приобретение трубопровода составляют:

$$C_K = m_B \cdot \mathcal{U} \,, \tag{3}$$

где $m_{\scriptscriptstyle B}$ — масса трубопровода; U — стоимость одного килограмма трубопровода.

С учетом того, что участок трубопровода можно представить как полый цилиндр, массу можем найти из выражения:

$$m_B = \rho_{CT} \cdot L \cdot \left(\frac{\pi \cdot D_H^2}{4} - \frac{\pi \cdot Dy^2}{4} \right), \tag{4}$$

где $\rho_{\it CT}$ — плотность стали; $D_{\it H}$ — наружный диаметр трубопровода.

Наружный и внутренний диаметры трубопровода связаны зависимостью:

$$D_H = Dy + 2 \cdot h \,, \tag{5}$$

где h — толщина стенки трубопровода.

Тогда формула (4) с учетом (5) после преобразования примет вид:

$$m_B = \rho_{CT} \cdot L \cdot \pi \cdot h \cdot (h + Dy).$$

Перепишем последнее выражение относительно параметра L и подставим в (2), тогда с учетом (3) получим:

$$H = \left(\frac{q}{k}\right)^{2} + k_{2} \cdot \frac{\left(q \cdot n\right)^{1.85}}{Dy^{4.87}} \cdot \frac{C_{K}}{\pi \cdot \rho_{CT} \cdot \mathcal{U}} \cdot \frac{1}{h \cdot \left(Dy + h\right)},$$

где
$$k_2 = \frac{6.05 \cdot 10^5}{C^{1.85}}$$
.

Таким образом, напор в распределительной сети можно представить как функцию, зависящую от диаметра трубопровода, количества оросителей и капитальных затрат.

Использую полученные выражения, был выполнен расчет параметров распределительной сети АСВП для следующих случаев:

- 1. Сеть состоит из четырех оросителей, диаметр трубопровода *Dy* выбирали с учетом условия (1) ближайший к имеющемуся сортаменту водогазопроводных труб.
- 2. Сеть состоит из четырех оросителей, диаметр трубопровода *Dy* равен 32 мм.
- 3. Сеть состоит из четырех оросителей, диаметр трубопровода *Dy* равен 40 мм.

- 4. Сеть состоит из шести оросителей, диаметр трубопровода *Dy* выбираесс аналогично для случая 1.
- 5. Сеть состоит из шести оросителей, диаметр трубопровода *Dy* равен 40 мм.
- 6. Сеть состоит из шести оросителей, диаметр трубопровода *Dy* равен 50 мм.

Результаты расчетов представлены в табл. 1 и табл. 2.

Табл. 1. Результаты определения параметров распределительной сети из четырех оросителей.

Параметр	Переменный диаметр трубопровола	Діаметр трубопровода 32 мм	Процентное отношение	Діаметр трубопровода 40 мм	Процентное отношение
Суммарный расход сети, л/с	5,9	4,3	29,3	4,1	32,2
Напор, Бар	22,3	19,9	11	12,6	43,5
Капитальные затраты, грн	819	837,5	2,26	1037	26,6

Табл. 2. Результаты определения параметров распределительной сети из шести оросителей.

Параметр	Переменный диаметр трубопровода	Діаметр трубопровода 40 мм	Процентное отношение	Діаметр трубопровода 50 мм	Процентное отношение
Суммарный расход сети, л/с	10,25	6,2	40,5	6,05	41,5
Напор, Бар	28,1	26,3	6,8	12	57,3
Капитальные затраты, грн	1391	1618,5	16,35	2028	45,8

Анализ результатов показал, что изменение диаметра трубопровода в большую сторону, хотя и ведет к росту капитальных затрат, но позволяет получить сеть, у которой суммарный расход и напор обеспечивают ограниченную интенсивность подачи ОТВ. Решение задачи оптимизации параметров распределительной сети

возможно с привлечением методов нелинейного программирования.

Выводы. В работе получены математические модели, которые позволяют производить расчет параметров распределительной сети систем водяного пожаротушения в зависимости от количества оросителей, диаметра трубопровода с учетом ограничений на стоимость системы.

ЛИТЕРАТУРА

- 1. Артамонов В. С., Груданова О. В., Таранцев А. А. Уточненный порядок расчета одноуровневых разветвленных гидравлических сетей. // Пожаровзрывобезопасность. 2008. № 3, т. 17. С. 77–83.
- 2. Дурєєв В. О. Дослідження гідравлічних параметрів розподільчої мережі системи водяного пожежогасіння. // Проблемы пожарной безопасности. 2018. Вып. 43. С. 54–57.
- 3. Мурин М. Н., Бондаренко С. Н., Литвяк А. Н. Определение максимального количества оросителей дренчерной секции автоматических систем водяного пожаротушения. // Проблемы пожарной безопасности. 2017. Вып. 42. С. 90–84.
- 4. Сучасні системи автоматичного пожежогасіння : навч. посіб. / О. А. Дерев'янко та інш. Харків : НУЦЗУ, 2018. 276 с.

С.М. Бондаренко, М.М. Мурін

Визначення параметрів розподільчої мережі системи водяного пожежогасіння з урахуванням її вартості

Отримані аналітичні вирази для визначення параметрів розподільчої мережі систем водяного пожежогасіння в залежності від витрати вогнегасної речовини, довжини та діаметру трубопроводу і капітальних витрат на систему пожежогасіння.

Ключові слова: автоматична система водяного пожежогасіння, капітальні витрати, розподільча мережа, діаметр трубопроводу.

S.M. Bondarenko, M.M. Murin

Determination of parameters of distributive pipeline of water fire extinguishing systems taking into account its cost

Analytical expressions are obtained for determining the pressure in the distribution network of a water fire extinguishing system depending on the number of sprinklers, the diameter of the pipeline and the capital costs of the fire extinguishing system.

Keywords: automatic water fire extinguishing system, capital costs, distribution network, pipeline diameter