FACTORS WHICH AFFECT ON THE VALUE OF THE α/γ-RATIO IN CsI:TI CRYSTAL

<u>Alexander M. Kudin</u>; Elena P. Sysoeva; Larisa N. Trefilova; Dmitriy I. Zosim; Elena V. Sysoeva

Dependencies of the α/γ -ratio on activator concentration (C_{Tl}) and shaping time are studied for CsI-Tl crystals. It has been shown that the α/γ -ratio depends strongly on the C_{Tl} and increase from 0.19 at low concentration to 0.71 for the optimal C_{Tl} if the shaping time equals 6.4 µs. Our results confirm completely the conclusion of Tsirlin et al. [1]. An explanation of the results given by Gwin and Murray in well known paper [2] is proposed.

The unusual effect of relatively strong increasing of light output for α -particle is revealed after crystal surface polishing. For instance it is possible to increase the α/γ ratio from 0.4 up to limit level 0.71 by grinding and polishing. The increasing of alpha-yield and the α/γ -ratio is a temporary effect and manifests itself as better as the C_{TI} smaller. Relaxation of a near surface layer continues some days and the α/γ -ratio reaches its natural value after two weeks. We concluded that paper [2] is not an experimental test of theoretical models known as Birks model and Murray and Meyer one [3].

- 1. Tsirlin Yu.A. et al. Optics and Spectroscopy. 4, No.3 (1959) 265.
- 2. R. Gwin and R. Murray. Phys. Rev. 131 (1963) 501.
- 3. Birks I.B. The Theory and Practice of Scintillation Counting // New York: Perqamon Press, 1964. 510 p.