ИНСТИТУТ МОНОКРИСТАЛЛОВ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК УКРАИНЫ

На правах рукописи

УДК. 539.1.074.3 535.37:548.0

КУДИН Александр Михайлович

РОЛЬ АКТИВАТОРНЫХ ДЕФЕКТОВ В ИЗМЕНЕНИИ СТРУКТУРЫ И СЦИНТИЛЛЯЦИОННЫХ СВОЙСТВ КРИСТАЛЛОВ NaI:TI

(01.04.10 - физика полупроводников и диэлектриков)

Диссертация на соискание ученой степени кандидата физико-математических наук

Научный руководитель - кандидат химических

Панова А.Н.

наук

Харьков 1996

СОДЕРЖАНИЕ

Списс	ок принятых сокращений и условных обозначений	6
Введе	ние	7
<u>Глава</u>	<u>1</u> . ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ФИЗИКО-ХИМИЧЕСКИХ, ЛЮМИНЕСЦЕНТНЫХ И СЦИНТИЛЛЯЦИОННЫХ СВОЙ- СТВАХ КРИСТАЛЛОВ НА ОСНОВЕ ЩЕЛОЧНЫХ ГАЛОГЕ- НИДОВ (ОБЗОР ЛИТЕРАТУРЫ)	14
1.1	Основные сцинтилляционные и физико-химические характери- стики кристаллов на основе йодидов щелочных металлов	14
1.2	Основные представления о механизме радиолюминесценции в кристаллах NaI и NaI(Tl)	17
1.2.1	Генерационный этап	18
1.2.2	Миграционный этап	22
1.2.3	Внутрицентровой этап	25
1.2.4	Структура треков ионизирующих частиц	26
1.2.5	Схема сцинтилляционного процесса в кристаллах NaI и NaI(Tl)	27
1.3	Люминесцентные свойства примесных ЩГК	30
1.3.1	Активация люминесценции	30
1.3.2	ЩГК, активированные ртутеподобными ионами	32
1.3.3	Активаторные дефекты, ответственные за свечение кристаллов NaI(Tl)	36
1.4	Факторы, определяющие сцинтилляционные свойства кристал- лов NaI(Tl)	40
1.4.1	Влияние содержания активатора на световой выход кристаллов NaI(Tl)	40
1.4.2	Факторы, определяющие собственное энергетическое разрешение сцинтиллятора	46
1.4.3	Влияние кислородсодержащих примесей на прозрачность и световой выход кристаллов	49
Вывод	цы из главы 1	53

<u>Глава</u>	<u>2</u> . ВЫРАЩИВАНИЕ КРИСТАЛЛОВ, ПРИГОТОВЛЕНИЕ ОБ- РАЗЦОВ И МЕТОДЫ ИХ ИССЛЕДОВАНИЙ ИХ ИССЛЕДО- ВАНИЙ	55			
2.1	Выращивание кристаллов	55			
2.1.1	Выращивание кристаллов в атмосфере кислорода				
2.2	Обработка кристаллов и подготовка образцов				
2.3	Методы исследования образцов и детекторов				
2.3.1	Исследования поглощения в УФ-, видимой и ИК-области спек- тра				
2.3.2	Фото-, радиолюминесценция и спектры возбуждения	60			
2.3.3	Исследования ТСЛ и ее спектрального состава				
2.3.4	Исследование фотосцинтилляций	64			
2.3.5	Измерение сцинтилляционных характеристик детекторов	65			
2.3.6	Исследования растворимости активатора	65			
<u>Глава</u>	<u>3</u> . ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ TII в Nal	66			
3.1	Образование твердых растворов и распределение примеси в ще- лочногалоидных кристаллах (обзор)	66			
3.1.1	Типы встройки примеси в решетку основного вещества	71			
3.1.2	Основные представления о механизмах распада твердых раство-	73			
3.1.3	 ров Экспериментальные методы исследования растворимости активатора 				
3.2	Распределение активатора при направленной кристаллизации NaI(Tl)	79			
3.3	Расчет кривой распада твердого раствора	81			
3.4	Электронно-микроскопические исследования кристаллов NaI(Tl)	84			
3.5	Изменение параметра решетки в системе NaI-TlI	85			
Вывод	цы из главы 3	90			
<u>Глава</u>	<u>4</u> . ТЕРМОСТИМУЛИРОВАННАЯ ЛЮМИНЕСЦЕНЦИЯ И ПОСЛЕСВЕЧЕНИЕ КРИСТАЛЛОВ NaI(Tl)	91			
4.1	Термостимулированная люминесценция NaI(Tl)	92			
4.1.1	Знак рекомбинационной люминесценции в области 240 К	97			

4.1.2	2 Зависимости интенсивности активаторных пиков ТСЛ от содер- жания таллия					
4.1.3	Спектральный состав свечения пиков ТСЛ					
4.2	Послесвечение кристаллов NaI(Tl) при комнатной температуре					
4.2.1	 Компоненты миллисекундного послесвечения при комнатной температуре					
4.2.2	Спектральный состав длительных компонент послесвечения	116				
4.3	Связь между пиками ТСЛ и компонентами ПС					
Вывод	цы из главы 4	120				
<u>Глава</u>	5. ВЛИЯНИЕ СОДЕРЖАНИЯ АКТИВАТОРА НА ИЗМЕНЕНИЕ ЛЮМИНЕСЦЕНТНЫХ И СЦИНТИЛЛЯЦИОННЫХ СВОЙСТВ КРИСТАЛЛОВ NaI(Tl)	121				
5.1	Концентрационные зависимости светового выхода и энергетиче- ского разрешения	122				
5.2	Влияние содержания активатора на фото- и радиолюминесцен- цию кристаллов NaI(Tl)					
5.3	Роль $(Tl^+)_2$ и СЦ в сцинтилляционном процессе	132				
5.3.1	Длительность фотосцинтилляций (Tl ⁺) ₂ и СЦ	133				
5.3.2	Вклад (Tl ⁺) ₂ и СЦ в сцинтилляционный импульс	135				
5.4	Причины ухудшения спектрометрического качества кристаллов в области концентрационного тушения светового выхода					
5.5	Температурные зависимости светового выхода кристаллов с различным содержанием таллия	144				
Вывод	цы из главы 5	146				
<u>Глава</u>	<u>6</u> . ВЛИЯНИЕ АТМОСФЕРЫ (КИСЛОРОДНОЙ) ВЫРАЩИВА- НИЯ НА СЦИНТИЛЛЯЦИОННЫЕ СВОЙСТВА КРИСТАЛ- ЛОВ NaI(Tl)	148				
6.1	Химические реакции взаимодействия кислорода с NaI	148				
6.2	ИК-поглощение кристаллов, выращенных в атмосфере кисло- рода					
6.3	Влияние кислорода на процесс кристаллизации	156				
6.4	Влияние кислорода на ТСЛ кристаллов NaI и NaI(Tl)					

6.4.1	1 Неактиваторные пики ТСЛ в кристаллах NaI и NaI(Tl)			
6.4.2	2 Влияние кислорода на активаторные пики ТСЛ			
6.4.3	Послесвечение кристаллов NaI(Tl), выращенных в атмосфере кислорода	163		
6.5	Влияние кислорода на световой выход и энергетическое разре- шение кристаллов NaI(Tl)	167		
6.5.1	Зависимость светового выхода кристаллов NaI(Tl) от содержания йодат-ионов	167		
6.5.2	Зависимость спектрометрических характеристик кристаллов NaI(Tl,IO ₃) от содержания таллия	168		
6.6	Возможный механизм влияния примеси кислорода на выход сцинтилляций и РЛ кристаллов NaI(Tl)	172		
Выво,	ды из главы 6	176		
Заклк	очение	178		
От ав	тора	181		
Литер	ратура	182		

Список принятых сокращений и условных обозначений

- ЩГК щелочногалоидные кристаллы
- РЛ радиолюминесценция
- ЭРЛ электронно-дырочная рекомбинационная люминесценция
- ДРЛ дырочно-электронная рекомбинационная люминесценция
- ТСЛ термостимулированная люминесценция
- ПС послесвечение

L - световой выход

dE/dx - плотность возбуждения в треке частицы

dL/dx - удельный световой выход

- $\eta_{\scriptscriptstyle 9}\,$ энергетический выход сцинтилляций
- $\eta_{\kappa_{\theta}}$ квантовый выход сцинтилляций
- *R* собственное энергетическое разрешение сцинтиллятора
- C_{Tl} содержание активатора в кристалле
- Со содержание примеси в расплаве
- *К*_о равновесный коэффициент распределения примеси
- Т температура
- *Т*_{*i*} температура плавления смеси

Т_{кр} - температура распада твердого раствора

 $\Delta H_{\rm cm}$ - разность энтальпий смешения в твердом растворе и расплаве

 $\Delta S_{\rm cm}$ - разность энтропий смешения в твердом растворе и расплаве

- k_i координационное число
- к коэффициент поглощения
- к_т коэффициент поглощения в максимуме излучения
- *J* интенсивность люминесценции
- J_{ϕ} интенсивность фосфоресценции (послесвечения)
- λ длина волны
- λ_m длина волны, соответствующая максимуму полосы излучения
- τ характерное время затухания сцинтилляций
- τ_φ характерное время затухания сцинтилляций при фотовозбуждении
- ΔN изменение фоновой скорости счета импульсов после облучения

Глава 3

ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ TIJ В NaJ

3.1 Образование твердых растворов и распределение примеси в щелочногалоидных кристаллах

Активированные сцинтилляторы представляют собой смешанные двухкомпонентные системы. Поскольку в основу получения этих кристаллов заложен процесс кристаллизации расплава, то вероятность и механизм вхождения активатора в решетку матрицы, его состояние в объеме кристалла определяется законом направленной кристаллизации.

Так, в зависимости от степени сродства примеси и основного вещества возможны различные механизмы их смешивания в твердом состоянии, а также различная степень дисперсности примеси в основном веществе. Исходя из классических представлений о твердых растворах, вероятность их образования определяется качественным правилом изоморфизма. В соответствии с [155], широкий изоморфизм компонентов проявляется, когда разность радиусов примесного и основного ионов не превышает 15 %, при тождестве их зарядов и близости поляризационных свойств. Количественная теория изоморфизма, построенная на основе регулярных растворов, несмотря на ряд приближений, позволяет не только понять основу правил изоморфизма, но и определить параметры процесса кристаллизации.

С позиций термодинамики причиной образования твердых растворов в процессе кристаллизации является выигрыш энергии при переходе смеси из жидкого состояния в твердое [156]:

$$\Delta G = \Delta H_{\rm cM} - T \,\Delta S_{\rm cM} \tag{3.1}$$

где ΔH_{cm} и ΔS_{cm} – разности энтальпии и энтропии смешения в твердом раст-

воре и расплаве, соответственно. Величина ΔH_{cm} является показателем растворимости компонента в твердой фазе и определяется соотношением взаимодействующих частиц, строением электронных оболочек, и, как следствие, характером образуемой ими связи, а также особенностями кристаллической структуры (типа симметрии, координационного числа). На рис. 3.1 представлено несколько вариантов соотношения отдельных функций смешения и соответствующие им простейшее типы диаграмм состояния. Как видно, высокие значения теплоты смешения приводят к ограниченной смешиваемости компонентов и распаду твердого раствора, а энтропийный эффект способствует смешению компонентов.

В изовалентных щелочно-галоидных системах с близким характером химической связи компонентов для теплоты их смешения справедливо выражение [157]

$$\Delta H_{CM}^{m_{\theta}} = C_0^1 C_0^2 Z_1 Z_2 A N k_i \left(\frac{\Delta R_i}{R_i}\right)^2, \qquad (3.2)$$

где C_0^1 , C_0^2 – мольные доли компонентов в расплаве, Z_1 и Z_2 – их заряд, k_i – координационное число, N – число атомов в молекуле, R_i – межионное расстояние по Вегарду, А – эмпирический параметр, связанный с упругими свойствами кристаллической решетки (для ЩГК параметр А = 32 Ккал/моль).

Энтальпия смешения расплавленных солей щелочных галогенидов определяется из равенства

$$\Delta H_{cM}^{\mathcal{H}} = \Delta H_{cM}^{me} \left(\frac{R_a}{R_i} - 0, 4 \right), \qquad (3.3)$$

где $R_{\rm a}$ – радиус общего аниона.

•

Рис. 3.1 – Соотношение термодинамических функций смешения и соответствующие им типы диаграмм состояния [156]

Вклад колебательной энтропии (∆*S*_{см}) в процессе смешения описывается выражением [158]

$$\Delta S_{CM} = 0.139 C_0^2 \left(\frac{\Delta R_i}{R_i}\right)^2. \tag{3.4}$$

На практике основным параметром процесса кристаллизации, характеризующим растворимость примеси в твердой фазе, является величина коэффициента распределения. В зависимости от условий кристаллизации различают равновесный (K_0) и эффективный ($K_{3\phi\phi}$) коэффициенты распределения. В случае разбавленных растворов, когда участки линий ликвидуса и солидуса диаграмм состояния могут быть представлены в виде прямых, $K_0 = C/C_0$, где C и C_0 – концентрации примеси в твердой и жидкой фазе, соответственно. Это соотношение справедливо для случая равновесной кристаллизации при полном перемешивании в жидкой фазе и отсутствии диффузии в твердой. Величина K_0 , при условии ее постоянства в процессе кристаллизации, связана с C, C_0 и относительным объемом слитка (1 – V/V_0) следующим равенством [140]:

$$C = C_0 K_0 \left(1 - \frac{V}{V_0} \right)^{K-1}.$$
 (3.5)

С термодинамическими параметрами системы величина *К*₀ связана выражением [159]

$$\ln K_0 = \frac{\Delta H_{nn}}{T} \left(\frac{1}{T_{np}} - \frac{1}{T_i} \right) - \frac{\Delta H_{cM}}{RT} - \frac{\Delta S_{cM}}{R}, \qquad (3.6)$$

где ΔH_{nn} – энтальпия плавления примесного компонента, T_{np} и T_i – температура плавления примесного вещества и смеси, соответственно, R – универсальная газовая постоянная.

Первичную информацию о поведении примеси в процессе направленной кристаллизации несет кривая распределения примеси вдоль слитка. При общем подходе все кривые могут быть разделены на равновесные и неравновесные. Первый случай реализуется лишь в условиях равновесной кристаллизации (3.5). В случае отсутствия полного перемешивания расплава, оттеснившаяся примесь создает вблизи фронта кристаллизации обогащенный слой, перенос избыточной примеси в котором осуществляется преимущественно диффузионными процессами, а не конвекцией. Толщина этого слоя *и* зависит от степени перемешивания расплава и изменяется в пределах от 10^{-3} до 10^{-1} см [160]. В этом случае взаимосвязь между концентрацией примеси в расплаве и в твердой фазе характеризуется эффективным коэффициентом распределения [161]

$$K_{s\phi\phi} = \frac{1}{1 + \left(\frac{1}{K_0} - 1\right) \exp\left(-\frac{fu}{D}\right)},$$
(3.7)

где *D* – коэффициент диффузии в жидкой фазе, *f* – скорость кристаллизации, *u* – толщина обогащенного слоя.

Причиной неравновесного распределения примеси вдоль слитка является концентрационное уплотнение примеси в расплаве у фронта кристаллизации, что имеет место при $K_0 < 1$. Поэтому, в случае кристаллизации систем с ограниченной растворимостью, что чаще всего встречается на практике, на начальных стадиях кристаллизации распределение примеси вдоль слитка близко к равновесному, затем условия равновесности нарушаются. При этом кривая распределения приближенно может быть описана выражением:

$$C = C_0 K_0 \left(1 - \frac{V}{V_0} \right)^{K_{s\phi\phi} - 1}$$
(3.8)

в случае, когда $K_0 > 0,5$ значение $K_{3\phi\phi}$ близко к K_0 [162]. Исходя из вышеизложенного, величина K_0 для случая равновесной кристаллизации может быть определена как из пересечения прямой в координатах ln *C* - ln(1–*V*/*V*₀) с осью ординат (ln C_0K_0), так и по углу ее наклона. При смешанных условиях кристаллизации – только из отрезка, отсекаемого по оси ординат.

Поскольку $K_0 = C/C_0$, то, располагая данными о концентрационной зависимости K_0 , можно определить взаимное расположение линий солидуса и ликвидуса диаграммы состояния системы, если последняя известна. Именно такой способ был использован А.Н. Киргинцевым для построения и уточнения участков диаграмм состояния ряда систем, в том числе и для системы NaI– Tll, смотри § 3.3.

3.1.1 Типы встройки примеси в решетку основного вещества

В зависимости от степени сродства кристаллизующихся веществ возможны различные механизмы образования смешанных кристаллов, определяющие типы встройки примеси в решетку основы.

Примесь может образовывать с основным веществом твердые растворы замещения, вычитания и внедрения, а также входить в матрицу в виде адсорбтивной встройки, или находиться в ней в виде различного размера макровключений.

В соответствии с классическими представлениями [163] под твердыми растворами понимают твердые однофазные системы переменного состава из двух или более компонентов, сохраняющие однородность (атомно-дисперсное статистическое распределение примеси в решетке) при изменении (неограниченно, или в известных пределах) соотношения между компонентами.

Твердые растворы замещения образуются, когда изовалентная примесь располагается в узле кристаллической решетки матрицы. Число кристаллизу-

ющихся частиц в элементарной ячейке при этом остается неизменным. В случае изоморфных изовалентных примесей имеет место существование широкой области твердых растворов.

В твердых растворах замещения со значительным различием размеров ионов примеси и матрицы согласно теоретическим оценкам, выполненным в [164], энергетически выгодно образование дефектов-комплексий, в которых N примесных ионов располагаются в (N + 1) узлах (если примесь имеет больший размер) и в (N - 1) узлах, в случае, когда радиус примеси значительно меньше матричного.

В процессе роста кристаллов по причинам, указанным в 3.1, возможны нарушения атомно-дисперсного распределения примеси, приводящие к слоистым выделениям ее в объеме. Промежуточное положение между твердыми растворами и макровыделениями примеси занимает так называемая примесная адсорбтивная встройка. В этом случае происходит замещение целых участков кристаллических решетки при наличии структурной аналогии (двухмерной или трехмерной) примесного и основного вещества. При этом аналогия размеров и структуры (частичный изоморфизм) определенных плоскостей смешивающихся веществ проявляется при особом расположении ячеек.

Для систем с адсорбтивной встройкой примеси характерна неизменность рефлексов основной решетки [165]. Особенностью такого типа сокристаллизации является наличие нижнего предела смешиваемости: для образования адсорбтивной встройки необходима определенная концентрация примеси в расплаве. Коэффициент распределения примеси в этом случае, а, точнее, коэффициент сокристаллизации, имеет вид кривой с насыщением, увеличиваясь от микро концентраций до определенной величины [166]. Кроме того, в системах с ограниченной растворимостью в результате неравновесных условий кристаллизации, а также вследствие термического распада пересыщенного твердого раствора могут возникать макровключения примеси.

3.1.2 Основные представления о механизмах распада твердых растворов

В твердых растворах двухкомпонентных систем, охлажденных до температуры ниже точки фазового превращения, происходит процесс выделения фазы, находящейся в равновесии с матрицей при данной температуре, называемый распадом твердого раствора. Поскольку равновесному состоянию системы соответствует минимум ее свободной энергии F, термодинамической движущей силой процесса распада является уменьшение величины F. Как и при образовании твердых растворов, механизм рассматриваемого процесса определяется диаграммой состояния примеси и кривой зависимости свободной энергии от состава смеси. Согласно [167], в случае вогнутой кривой свободная энергия двухфазной смеси больше, чем энергия твердого раствора, вследствие чего распад не происходит и система остается однофазной (рис.3.2,а). Для выпуклой кривой $\Delta F - C_0$ свободная энергия смеси всегда ниже свободной энергии твердого раствора такого же состава. В этом случае распад идет при непрерывном понижении энергии и не требует активационного образования зародышей новой фазы (спинодальный распад, рис.3.2, в). При этом составы образующихся фаз изменяются непрерывно, а распад происходит одновременно по всему объему кристалла. Кинетика такого процесса описывается в рамках флуктуационной теории выделений.

Рис. 3.2 – Кривые зависимости свободной энергии от состава смеси и соответствующие им типы диаграмм состояния [156].

В большинстве случаев кривые распада реальных систем состоят из вогнутых и выпуклых участков (рис.3.2,6). В результате распада таких систем образуются две фазы, составы которых определяются положением минимумов кривой $\Delta F - C_0$, при этом механизм распада в соответствии с нуклеационной теорией выделений состоит из двух стадий [168]. На первой стадии, когда твердый раствор путем переохлаждения ниже критической температуры приведен в состояние пресыщения, происходит зарождение и рост выделений новой фазы непосредственно из пересыщенного раствора. Эта стадия называется стадией выделения. На второй стадии процесса распада пересыщение мало и поддерживается лапласовским давлением из-за наличия замкнутых межфазных поверхностей. Такому пресыщению соответствуют зародыши критического размера N_{κ} [169], при этом зародыши с числом атомов N находятся в неустойчивом равновесии с матрицей: при $N < N_0$ они растворяются, при $N > N_0$ растут. Энергия образования критического зародыша связана с его размером следующим соотношением:

$$F = \frac{1}{3}g f N_{\kappa}^{2/3}, \qquad (3.9)$$

где *f* – удельная межфазная энергия, *g* – геометрический фактор, зависящий от формы поверхности зародыша.

Согласно [167], с увеличением степени пресыщения размер критического зародыша уменьшается, следовательно, в соответствии с (3.9) уменьшается и его энергия образования. В соответствии с нуклеационной теорией стабильный зародыш может образоваться только в результате серии благоприятных ситуаций. Поэтому процессу быстрого выделения должен предшествовать инкубационный период, в течение которого происходит перегруппировка атомов и реализация квазистационарного распределения их по размерам. Скорость образования зародышей определяется величиной коэффициента диффузии примеси. При низких температурах скорость зарождения понижается в связи с уменьшением диффузионной подвижности атомов. С повышением температуры последняя возрастает, но падает пресыщение и увеличивается энергия образования скоплений, что приводит к уменьшению скорости образования зародышей.

Предотвратить выделение зародышей новой фазы можно путем закалки – быстрого перевода высоко температурного состояния системы в область низких температур.

К настоящему времени накоплен обширный теоретический и экспериментальный материал относительно кинетики распада твердых растворов в двухкомпонентных системах. Особый интерес в этом плане переставляют ЩГК, активированные двух- и одновалентными катионами, ввиду их широкого практического применения. Установлено, что механизм процесса агрегации примеси существенно зависит от температуры. В области высоких температур процесс агрегации, в основном, обусловлен образованием частиц новой фазы из пересыщенного твердого раствора. Процесс распада при этом носит гетерогенный характер, значительную роль в этом процессе играют дислокации, границы зерен, микропоры (см., например, [170,171]).

В области низких температур агрегация примеси происходит обычно через промежуточные стадии. В ЩГК с примесями двухвалентных катионов вследствие электростатического взаимодействия между примесь-вакансионными диполями на начальных стадиях распада происходит с образованием димеров и тримеров, состоящих из комплексов $Me^{2+}-V_{C}^{-}$ [172, 173]. Процесс дальнейшего укрупнения специфичен для каждой системы. В кристаллах NaCl:Me²⁺, где Me – Cd, Fe, Mn [174], рентгенографическими методами установлено наличие метастабильной фазы MeCl-6NaCl. В системах с отношением радиуса примесного к матричному катиону, не превышающему 1.2, возможно образование фазы Сузуки [175].

В ЩГК с изовалентными примесями, определяющими в процессах агрегации являются упругие взаимодействия. Согласно [176], устойчивые пары одновалентных примесей могут образоваться лишь близлежащими ионами, причем энергия связи такого димера мала и составляет ~ 0,02-0,04 эВ.

В примесных ЩГК в силу их структурных особенностей энергетически выгодно образование, в конечном счете, выделений прямоугольной формы с произвольным отношением сторон (пластины, стержни).

3.1.3 Экспериментальные методы исследования растворимости активатора

Одним из основных методов достижения необходимых характеристик новых материалов является легирование исходного соединения. Описание полученных твердых растворов обычно включает анализ выполнения правила Вегарда [177]. В наиболее общей формулировке правило Вегарда гласит, что объемы элементарных ячеек линейно зависят от концентрации [178, 179] (правило Ретгерса):

$$d^{3}(C) = (1 - C) d_{1}^{3} + C d_{2}^{3}, \qquad (3.7)$$

где d_1 , d_2 – параметры элементарных ячеек первого и второго компонентов. Действительно, объем, приходящийся на структурно-химическую единицу ("молекулу"), сохраняется с хорошей точностью при образовании не только твердых растворов, но даже тройных соединений из двойных [180].

Чаще всего правило Вегарда используют в его простейшей формулировке [181], согласно которой *d* линейно зависит от состава твердого раствора:

$$d(C) = (1 - C) d_1 + C d_2.$$
(3.8)

Если d_1 и d_2 различаются не более чем на 10 %, формулировка (3.8) вполне приемлема [180].

Нам известна лишь одна работа [114], посвященная анализу выполнения правила Вегарда в системе NaI–TII. Из данных этой работы, учитывая комментарий [153], можно заключить, что растворимость TII не превышает 0,7 %. Начиная с 2,62 % TII, параметр решетки уже не зависит от концентрации активатора. При C > 6 % TII на рентгенограммах появляются линии, соответствующие решетке TII. Цитируемая работа выполнена не на монокристаллах, поэтому нельзя с уверенностью утверждать, что появление второй фазы связано с распадом твердого раствора, а не с захватами примеси в процессе кристаллизации (см.2.1).

Высокой чувствительностью к наличию выделений второй фазы обладает метод электронной микроскопии. Декорируя поверхность скола можно не только выявить выделения, но и получить информацию об их геометрии [182]. Именно таким методом была получена информация о распаде твердого раствора в неизоморфной системе CsI-NaI [115]. Другим часто применяющимся методом для исследования макронеоднородностей в кристаллах является метод светорассеяния. Достоинством этого метода является то, что с его помощью наблюдается не одна случайная частица, а их ансамбль, что позволяет получить усредненную информацию о размере, форме и ориентации неоднородностей. Кроме того, с помощью данного метода, в принципе, возможно наблюдение за неоднородностями непосредственно в процессе нагрева, в ходе которого меняются их характеристики. Монокристаллы NaI:Tl, в том числе и с содержанием активатора, соответствующим области концентрационного тушения выхода сцинтилляций, методом рассеяния света исследовались в [183]. Несмотря на наличие в таких кристаллах заметного рассеяния света, связать его с выделениями фазы TII не удалось.

3.2 Распределение активатора при направленной кристаллизации кристаллов NaI:Tl

Кривые распределения ТІІ по высоте кристаллов NaI:ТІ представлены на рис. 3.3. При относительно небольших (и обычно используемых) содержаниях ТІІ в шихте ~ 0,2-0,4 вес % распределение активатора вдоль слитка практически подчиняется пфановскому. Небольшие отклонения от равновесного распределения в начале цилиндрической части були отражают хорошо известный факт нестационарных условий роста при разращивании монокристалла по диаметру и могут быть сведены к минимуму уменьшением скорости опускания ампулы на начальной стадии роста [184]. Во всяком случае, распределение активатора описывается гладкой кривой, и коэффициент распределения после установления стационарных условий роста оказывается равным 0,25, как и в [149].

С увеличением концентрации ТІІ в расплаве больше чем 0,6 вес % отклонения от равновесного распределения становятся существенными.

Содержание ТІІ, 10⁻² мол %

Рис. 3.3 – Распределение активатора по высоте кристаллов NaI:Tl. $C_0 = 0.36$ % TlI (a), $C_0 = 0.09$ % TlI (б).

1 – кристаллизация в вакууме; 2 – в атмосфере кислорода;

3 — распределение согласно закону направленной кристаллизации Для значения $K_0 = 0,25$. Распределение активатора уже не описывается гладкой кривой и, поэтому, определить K_0 не представляется возможным даже по содержанию активатора в начальной части слитка, так как радиальный разброс данных достигает 30 % в соседних образцах, вырезанных из одного слоя. Вырастить качественные кристаллы с еще большей концентрацией (больше 1,2 вес % ТІІ в шихте) в вакуумированных кварцевых ампулах не удалось, даже если скорость кристаллизации снижалась до значения 1 мм/час, см. § 2.1.

Таким образом, увеличение содержания активатора в расплаве приводит к нарушению условий роста и неравновесному распределению таллия по объему кристалла. Указанные явления наблюдаются при выращивании кристаллов с содержанием активатора, соответствующим области концентрационного тушения выхода сцинтилляций.

3.3 Расчет кривой распада твердого раствора

Система NaI-TII по данным термического анализа характеризуется как эвтектическая, твердых растворов в которой не обнаружено [148]. Положение эвтектической точки значительно смещено в сторону TII и составляет 87,5 мол % TII.

Диаграмма состояния в области твердых растворов на основе NaI построена А.Н. Киргинцевым [149] по данным исследования направленной кристаллизации. Авторами [149] установлено, что поведение TII при направленной кристаллизации NaI характеризуется постоянством равновесного коэффициента распределения в широком интервале изменения концентрации TII. В пределах ошибки измерения $K_0 = 0.25 \pm 0.03$ при изменении концентрации примеси от микрообласти до 55 мол % TII. Используя данные термического анализа [148], определяющие положение линии ликвидуса, и данные направленной кристаллизации, авторы [149] построили участок линии солидуса в области кристаллизации твердых растворов на основе NaI (рис. 3.4). На рисунке штриховой линией показан участок солидуса, построенный в предположении, что величина K_0 остается постоянной до эвтектической концентрации.

Для построения кривой распада твердого раствора мы использовали номограмму для определения пределов растворимости компонента с большими размерами в зависимости от *T* и $\Delta R/R$ из монографии Урусова [159]. Согласно диаграмме состояния на рис. 3.5, максимальная растворимость активатора достигается при температуре эвтектики 427°C и составляет 21,8% ТШ. Используя эти данные, была определена максимальная температура кривой распада T_{max} (для $\Delta R/R = 0,1$), которая оказалась равной 833 К.

Зная T_{max} , легко определить предельную растворимость для любой приведенной температуры T/T_{max} . Например, при комнатной температуре ($T/T_{max} = 0,358$), согласно вышеуказанной номограмме, растворимость активатора составляет 0,51% ТШ. Кривая распада твердого раствора ТШ в NaI приведена на рис.3.4, кривая 3.

Проведенные расчеты, конечно же, носят оценочный характер. Во-первых, линия солидуса на диаграмме состояния построена в предположении о постоянстве K_0 вплоть до эвтектической концентрации. Во-вторых, сам факт постоянства экспериментальных значений K_0 вызывает удивление. Расчеты, проведенные по уравнению (3.6), показывают, что с увеличением C_0 значения K_0 должны увеличиваться от величины 0,301 (бесконечное разбавление) до 0,320 (5 мол % TII) и до 0,485 (50 мол % TII в шихте).

Рис. 3.4 – Диаграмма состояния системы NaI – TlI в области кристаллизации твердых растворов на основе NaI.

- 1 линия ликвидуса [148]; 2 линия солидуса [149];
- 3 кривая распада твердого раствора.

Полученное нами экспериментальное значение K_0 совпадает с результатами [149], $K_0 = 0,25$ при C_0 порядка 0,2-0,4% ТШ. Если тенденция к его увеличению, как это следует из расчетов, действительно имеет место, то проведенная оценка растворимости активатора является нижним пределом.

3.4. Электронно-микроскопические исследования кристаллов

Методические подробности техники электронно-микроскопических исследований детально описаны в работах [182, 185]. Остановимся лишь на некоторых существенных подробностях. Для исследований выкалывались образцы кристаллов NaI и NaI:Tl размером 4×4×15 мм³, а свежий скол перед напылением пленки золота и угольной реплики производился непосредственно в вакуумной установке (ВУП-4), при этом образец раскалывался поперек на две приблизительно равные части. Особенно подробно исследовались образцы с наибольшей концентрацией активатора.

Подобранный режим декорирования позволял проявить на поверхности скола не только точечные дефекты, но и моноатомные ступени, тем более границы раздела фаз (именно таким способом [115] были обнаружены выделения второй фазы в неизоморфной системе CsI-NaI). Каких либо указаний на наличие в кристаллах выделений фазы TlI получено не было, даже при $C_{TI} \sim 0,75$ мол %.

Вместо этого был обнаружен эффект резко неоднородного характера декорирования поверхности в разных участках скола, причем размер участков был больше поля зрения электронного микроскопа (2 мкм) и колебался в пределах ~3-10 мкм. В пределах участков первого типа декорировались более мелкие дефекты, островки золота на участках второго типа были более крупными, а их плотность ниже. Границ раздела между участками не наблюдалось. Количество участков второго типа было максимальным в образцах с самым высоким содержанием активатора. Если содержание TII в образце соответствовало области плато зависимости $L(C_{TI})$, то по всей поверхности скола декорировались однотипные мелкие дефекты. К сожалению, пропорциональная зависимость числа мелких дефектов от C_{TI} наблюдается лишь в ограниченном интервале концентраций (в пределах порядка 10^{-3} мол %). Если $C_{TI} < 1.10^{-3}$ % TII, то характер декорирования соответствует фоновому, т.е. таковому для неактивированных кристаллов NaI, поэтому связать наблюдаемые дефекты с активаторными дефектами типа TI⁺ не удалось.

К обсуждению наблюдаемого неоднородного характера декорирования разных участков скола мы еще вернемся в 3.5 и 5.4.

3.5 Изменение параметра решетки в системе NaI-TII

Измерения параметра решетки и монокристаллов NaI:Tl проведены с помощью метода [186] на трехкристальном рентгеновском дифрактометре. Преимущество такого метода состоит в том, что измеряется не сам параметр решетки, а его изменение в исследуемом образце относительно эталона. Проведенное сравнение параметров решетки номинально чистых образцов NaI показало заметный разброс значений *d* в зависимости от качества исходной шихты и способа выращивания. В качестве образца сравнения был выбран довольно крупный ($15 \times 15 \times 20$ мм³) монокристалл NaI с зеркальными сколами и минимальным количеством малоугловых границ, выращенный методом Киропулоса в инертной атмосфере, который оказался наиболее удобным в работе. Однако его параметр решетки соответствовал *d* кристалла с содержанием активатора $3 \cdot 10^{-2}$ % TII, поэтому значения $\Delta d/d$, приведенные в Таблице 3.1 и на рис.3.5 даны относительно эталона NaI, который выращен по той же технологии и из той же партии сырья (см. § 2.1), что и исследуемые кристаллы NaI:Tl. Из-за небольших размеров этот эталон был неудобен для использования в качестве образца сравнения. По причинам, указанным выше, достоверными могут считаться данные только для кристаллов с $C_{\text{Tl}} > 0,1$ % TII и при условии, что они выращены по одной технологии.

Значительной трудностью настоящих исследований было то, что выбор образцов (обычный размер $10 \times 10 \times 10$ мм³) лимитировался структурным совершенством кристаллов, поэтому подбирались образцы с наиболее совершенными сколами. Ввиду значительного разброса данных химического анализа на таллий, характерного для кристаллов с высоким содержанием активатора (см. 3.2), определение концентрации проводилось как в тонкой пластинке (~1 мм), сколотой с поверхности исследованного образца, так и в ее зеркальном близнеце. Усы экспериментальных точек на рис. 3.5 соответствуют данным, как минимум, двух таких определений.

Результаты исследований, представленные в Табл. 3.1 и на рис.3.5, показывают, что в системе NaI–TII выполняется правило Вегарда, по крайней мере, до $C_{\text{TI}} = 0,79$ % TII, и подтверждают (и дополняют), в принципе, данные [114]. Разница состоит в том, что нами исследован именно тот интервал концентраций, где указанное правило выполняется. При больших содержаниях активатора, как следует из [114], зависимость отклоняется от линейной и при $C_{\text{TI}} > 2,6$ % TII параметр решетки не зависит от C_{TI} . Вырастить монокристаллические образцы с $C_{\text{TI}} > 0,79$ % TII в вакуумированных ампулах нам не удалось (см.2.1). Результаты работы [114] получены для измельченных слоев слитка, разрезанного на части поперек оси роста. Не исключено, что слитки с очень высоким содержанием таллия, как и в нашем случае, представляли

Рис. 3.5 – Изменение параметра решетки ∠d/d в системе NaJ – TlJ. Прямая – изменение ∠d/d в соответствие с правилом Вегарда, точки – экспериментальные данные для кристаллов, выращенных в вакууме (1), и в атмосфере кислорода (2).

Параметр решетки NaI и его изменение в системе NaI-TlI $(T = 20^{\circ}C)$

Образцы	Содержание TlI, мол %	<i>d</i> , Á {800}	$\frac{\Delta d}{d}, 10^{-4}$	<i>d</i> , Á {100}
NaI, эталон	$< 1.10^{-5}$	0.809048	_	6.47238
NaI:Tl	$2,5 \cdot 10^{-2}$	0.809076	0,35	6.47261
- " -	1,0.10-1	0.809133	1,05	6.47306
- " -	3,1.10-1	0.809309	3,22	6.47447
_ '' _	$4, 4 \cdot 10^{-1}$	0.809401	4,36	6.47521
_ '' _	4,5.10-1	0.809452	4,99	6.47561
- " -	5,5.10-1	0.809504	5,64	6.47603
_ '' _	6,7.10-1	0.809623	7,10	6.47698
_ '' _	7,3.10-1	0.809648	7,42	6.47718
- " -	7,9.10-1	0.809739	8,51	6.47792
NaI:Tl,IO ₃	3,7.10-1	0.809139	1,12	6.47311
_ '' _	$4,2\cdot 10^{-1}$	0.809143	1,18	6.47314

Погрешность: в определении параметра решетки ± 2·10⁻⁵ Å;

в определении $\Delta d/d \pm 2.10^{-6}$.

собой поликристаллическую смесь отдельных фаз. Результаты, полученные для кристаллов, выращенных в атмосфере кислорода, обсуждаются в 5.7.

Таким образом, сцинтилляционные кристаллы NaI:Tl в исследованном диапазоне содержаний активатора представляют собой твердый раствор замещения. Содержание активатора в обычно используемых детекторах соответствует области плато на зависимости $L(C_{Tl})$ и на порядок меньше, чем экспериментально определенный предел растворимости при комнатной температуре. Если $C_{Tl} > 0,1$ % Tll, в кристаллах наблюдается концентрационное тушение выхода сцинтилляций и резкое увеличение количества активаторных дефектов типа (Tl⁺)_n (см. 1.4.1). Поскольку распад системы на отдельные компоненты не происходит, то, из рассмотренных в 3.1.2 возможностей, остается вероятность спинодального распада твердого раствора, т.е. обогащение одних участков кристалла примесью за счет обеднения других без четкой границы между участками. Возможно, этот процесс объясняет наблюдаемый при электронно-микроскопических исследованиях резко неоднородный характер декорирования поверхности скола (см. 3.4).

ВЫВОДЫ

Смешанные кристаллы NaI-TII представляют собой систему с ограниченной растворимостью. Оценка предельной растворимости активатора при комнатной температуре по диаграмме состояния дает величину 0,51 % TII. Экспериментально определенная по выполнению правила Вегарда растворимость TII в NaI составляет не менее 0,79 %.

Активатор может быть представлен в решетке NaI ионами Tl⁺, их агрегатами – $(Tl^+)_2$, $(Tl^+)_n$ и в виде скоплений указанных дефектов. Выделений второй фазы в рассматриваемом диапазоне концентраций не обнаружено. Наблюдаемые в NaI:Тl неоднородности размером ~ 3-10 мкм имеют активаторную природу и характерны для кристаллов с содержанием таллия, соответствующим области концентрационного тушения выхода сцинтилляций.

Из возможных видов распада для системы NaI - Tll при используемых концентрациях активатора вероятен только спинодальный распад твердого раствора.

Отметим также важный для дальнейшего рассмотрения вывод о том, что концентрационное тушение выхода сцинтилляций не связано с выпадением части активатора в фазу TII.

- 1. Панова А.Н. Неорганические сцинтилляторы // Изв. АН СССР сер. физ.-1985. - Т.49, № 10. - С.1994-1998.
- 2. Гринев Б.В., Семиноженко В.П. Сцинтилляционные детекторы ионизрующих излучений для жестких условий эксплуатации // Харьков: Издательство "Основа" 1993. 155 с.
- Алукер Э.Д., Лусис Д.Ю., Чернов С.А. Электронные возбуждения и радиолюминесценция щелочногалоидных кристаллов // Рига: Зинатне. - 1979. -251 с.
- 4. Ковалева Л.В., Гуревич Н.Ю., Виноград Э.Л., Козлов С.Н., Власова И.Д., Цирлин Ю.А. Сцинтилляционные детекторы на основе кристаллов CsI(Tl) для компьютерной томографии // ПТЭ. 1990. № 3. С.198-201.
- Birks I.B. The Theory and Practice of Scintillation Counting // New York: Perqamon Press. - 1964. - 510 p.
- 6. Алукер Э.Д., Гаврилов В.В., Дейч Р.Г., Чернов С.А. Быстропротекающие радиационно-стимулированные процессы в щелочно-галоидных кристаллах // Рига: Зинатне. 1987. 183 с.
- 7. Лущик А.Ч., Лущик Ч.Б. Распад электронных возбуждений с образованием дефектов в твердых телах // М.: Наука. 1989. 264 с.
- Лущик Ч.Б., Лийдья Г.Г., Соовик Т.А., Яэк И.В. О механизме люминесценции щелочногалоидных кристаллов при возбуждении ультрафиолетовой радиацией и жестким излучением // Труды ИФА АН ЭССР. - 1961. - № 15. - С. 103-126.
- 9. Лущик Ч.Б., Соовик Т.А. Некоторые проблемы физики неорганических сцинтилляторов // Труды ИФА АН ЭССР. 1966. № 34. С.68-88.
- 10. Экспериментальная ядерная физика. Под ред. Серге Э. // М.: Иностранная литература. 1955. Т.1. 662 с.
- 11. Иванов В.И. Курс дозиметрии. 3-е изд. // М.: Атомиздат. 1978. 392 с.
- 12. Ободовский И.М. Преобразование энергии ионизирующего излучения в веществе // М.: Изд. МИФИ. 1981. 108 с.
- Ляпидевский В.К. Сцинтилляционный метод детектирования излучений // М.: Изд. МФТИ. - 1981. - 88 с.
- 14. Вайсбурд Д.И., Семин Б.Н., Таванов Э.Г. и др. Высокоэнергетическая электроника твердого тела // Новосибирск: Наука. 1982. 227 с.
- 15. Богданкевич О.В., Дарзнек С.А., Елисеев П.Г. Полупроводниковые лазеры // М.: Наука. - 1976. - 415 с.
- Ильманс Э.Р., Лийдья Г.Г., Лущик Ч.Б. и др. Фотонное умножение в кристаллах и явление радиолюминесценции // Радиационная физика. Рига: Зинатне. - 1966. - вып.4. - С.71-83.
- Vaisburd D.I., Balichev I.N., Gering G.I., Shkatov V.T. Luminescence and Fracture of Ionic Crystals as Result of Their Electron Subsystem Superdonse Excitation // Int. Conf. Lumines. Abstracts. Leningrad. - 1972. - rep.42. - P.34.
- 18. Куусманн И.Л., Либлик П.Х., Лущик Ч.Б. Краевая люминесценция экситонов в ионных кристаллах // Письма в ЖЭТФ. 1975. Т.21. С.161-163.

- Куусманн И.Л, Лийдья Г.Г., Лущик Ч.Б. Люминесценция свободных и автолокализованных экситонов в ионных кристаллах // Труды ИФА АН ЭССР.
 1976. № 46. С.5-80.
- 20. Murray R.B., Keller F.G. Recombination Luminescence from V_k- centers in Potassium Iodide // Phys. Rev. - 1965. - V. 137A, № 3. - P.942-948.
- 21. Marrone M.J., Patten F.W. EPR in Triplet States of the Self-trapped Exiton // Phys. Rev. Lett. 1973. V.311, № 7.- P.467-471.
- 22. Захарко Я.М., Чепелев В.В. Некоторые эффекты взаимодействия рентгеновского излучения с кристаллами NaI(Tl) и их связь со спектрометрией детекторов // Изв. АН СССР, сер. физ. - 1965. - Т.29. - № 1. - С.78-81.
- 23. Свэнк Р.К. Характеристики сцинтилляторов // УФН. 1956. Т.58, Вып. 3. С. 519-553.
- 24. Broser J., Kallman H., Martins V. Die absolute energie ausbente von Leuchtstoffen bei Anregung mit -Teilchen, -Quanten und weichen Rontgenstrahlen // Z. Naturforsch. 1949. Bd. 4a. S.204-217.
- 25. Михальченко Г.А. Радиолюминесценция щелочногалоидных кристаллов // Дис... докт. хим. наук. Л.: 1970. 430 с.
- 26. Алукер Э.Д., Чернов С.А. Миграция энергии и энергетический выход сцинтилляций в щелочногалоидных сцинтилляторах // Препринт Ин-та физики АН Латв. ССР, Саласпилс. - 1982. - ЛАФИ-049. - 36 с.
- 27. Кинк Р.А., Лийдья Г.Г. Об электронно-дырочной компоненте радиолю-минесценции щелочногалоидных сцинтилляторов // Труды ИФА АН ЭССР. -1966. - № 31. - С.142-158.
- 28. Van Sciver W., Hofstadter R. NaI(Tl) Crystals // Phys. Rev. 1955. V.97. P. 1181-1196.
- 29. Виноград Э.Л., Проценко В.Г., Удовиченко Л.В. О природе УФ люминесценции кристаллов NaI(Tl) при комнатной температуре // ЖПС. - 1992. -Т.57, № 5-6. - С.520-522.
- Смольская Л.П., Барышников В.И., Колесникова Т.А. Об участии сложных центров в сцинтилляционном процессе кристаллов NaI(Tl) // Опт. и Спектр. -1991. - Т.71, вып.5. - С. 764-767.
- 31. Алукер Н.Л., Гаврилов В.В., Дейч Р.Г., и др. Передача энергии центрам свечения в NaI(Tl) // Изв. АН Латв. ССР, сер.физ. и техн. наук. 1985. № 3. С.37-42.
- 32. Яэк И.В. О возбуждении примесных центров в щелочногалоидных кристаллах при рекомбинации электронов и дырок // Труды ИФА АН ЭССР. 1963. № 23. С.170-174.
- 33. Плявинь И.К. О кинетике фото- и гамма-люминесценции в некоторых щелочногалоидных кристаллах, активированных Т1 // Опт. и Спектр. - 1959. -Т.7. - Вып.1. - С.71-77.
- 34. Шамовский Л.М. Кристаллофосфоры и сцинтилляторы в геологии // М.: Недра. 1985. 239 с.
- 35. Сцинтилляционные детекторы // Каталог фирмы "Harshaw". 1989. 20 с.
- 36. Шварц К.К. Эффективность люминесценции щелочногалоидных кристаллов // Дис... докт. физ.-мат. наук. М. - 1970. - 267 с.

- Флейшер Р.Л., Прайс П.Б., Уокер Р.М. Треки заряженных частиц в твердых телах. Часть 1: Методы исследования треков // М.: Энергоиздат.-1981.- 152с.
- 38. Fisher B.E., Spohr R. Production and Use of Nuclear tracks: Imprinting Structure on Solids // Rev. Mod. Phys.- 1983. V.55. N 4. P. 907-948.
- 39. Ляпидевский В.К. Процессы в треке быстрой заряженной частицы // Москва: Изд. МИФИ. 1982. 44 с.
- 40. Oxford Chemistry Series. Radiation Chemistry // Qordon Huqhes. Clarendon Press, Oxford. 1973. 89 p.
- Bertsche V., Iliakis G. Radiation Quality and Vapour of Potentially lethal damage // In: Radiation Protection. Microdosimetry. Proceedings of Eighth Symposium, Julich, Federal Republic of Germany (27 sept. - 1 oct. 1982). Rep. EVR 8395 EN, 1983. - P. 383-395.
- 42. Kroger F.A. Some Aspect of the Luminescence of Solids // New York-Amsterdam-London-Brussels. - 1948. - 419 p.
- 43. Ohaka R., Fuita I, Fukuda A. V_k-center in alkali halides // J. Phys. Soc. Japan. 1963. V.19. Suppl. 2. P.263-268.
- 44. Lamansch H., Rossel J., Saurer E. Localized and self-trapped excitions in CsI // Phys. Stat. Sol. 1970. V. 41. P. 98-107.
- 45. Lamantsch H., Rossel J., Saurer E. Kinetics of localized exciton recombination in CsI // Phys. Stat. Sol. (b). 1971. V.46. No 2. P.687-695.
- 46. Wakita S. Luminescence of KBr-KI solid solution // J. Phys. Soc. Jap. 1971. V.31. No 5. P.1505-1512.
- 47. Валбис Я.А. Люминесценция связанных экситонов в щелочно-галоидных кристаллах с примесями катионов первой группы // Оптика и Спектр. 1966. Т.21, № 2. С.181-187.
- 48. Seitz F. Speculation on the properties of silver halide crystals // Rev. Mod. Phys. 1951. V.23. No 4. P.328-352.
- 49. Klick C.C., Patterson D.A. Low Temperature Coloration in KCl and KBr Near the Fundamental Edge // Phys. Rev. 1962. V.130. No 6. P.2169-2176.
- 50. Rosenstok H. Alpha and Gamma Bands in Alkali Halides // Phys. Rev. 1963. V.131. No 3. P.1111-1113.
- 51. Tomusk T. Optical Absorption and Luminescence of the α -center in KBr // J. Phys. Chem. Sol. 1965. V.26. No 5. P. 236-241.
- 52. Церцвадзе А. Энергия экситонного поглощения в области γ-полосы в щелочно-галоидных кристаллах // ФТТ. - 1961. - Т. 3, № 2. - С.336-341.
- 53. Розман Г.А., Колбасовская Н.Г., Плевина Г.А. Новая полоса поглощения экситона, локализованного вблизи диполона // Оптика и Спектр. 1982. Т.53. № 5. С. 782-784.
- 54. Измайлов С.В., Розман Г.А. Оптические процессы в кристаллах щелочных галогенидов, вызванные диполонами (нейтральными вакансионными парами) // Тез. докл. Всес. конф. "Физика диэлектриков и перспективы ее развития": М.- 1973. - С.81-83.
- 55. Donahue J., Teeqarden K. Luminescence from Perturbed Exciton States // J. Phys. Chem. Sol. 1968. V.29. No 12. P.2141-2151.

- 56. Illingworth R. Luminescence decay of KI(Tl), KBr(Tl) and KCl(Tl) // Phys. Rev. 1964. V.13. N 2A. P.508-517.
- 57. Валбис Я.А. Люминесценция щелочногалоидных кристаллов, обусловленная излучательной аннигиляцией локализованных экситоноподобных возбуждений // Автореферат дисс... канд. физ.-мат. наук: Рига. - 1966. - 17 с.
- 58. Панова А.Н., Ширан Н.В. Центры свечения в CsI(Na) // Изв. АН Латв. ССР, сер. физ. и техн. 1972. № 2. С. 118-122.
- 59. Панова А.Н., Ширан Н.В. Исследование фото- и радиолюминесценции кристаллов CsI(Na) // Тез. докл. Ш межд. конф. по люминесценции. Л.: 1972.- С. 35-36.
- 60. Иванова Н.И., Тарасова Л.И. Спектры люминесценции щелочно-галоидных фосфоров со смешанными основаниями // В сб. "Люминесценция" М.: Изд-во АН СССР. - 1963.- № 1. - С.167-174.
- 61. Жуковский А.Н. О возможности сосуществования в щелочногалоидных кристаллах центров люминесценции типа комплексов // Автореферат дисс... канд. хим. наук. Л. 1966. 17 с.
- 62. Абдусадыков Т.А. // Труды ИФА АН ЭССР. 1959. № 10. С. 97-137.
- 63. Yuster P.H., Delbecq C.J. Thallium Dimers in KI-Tl Crystal // J. Chem. Phys. 1953. V.21. No 4. P. 892-900.
- 64. Tsuboi T., Kato R. Thallium cluster in KI(Tl) crystals // J. Phys. Soc. Japan. 1968. V.24.- No 2. P.427.
- 65. Гарбер П.Р. Люминесценция ЩГК с повышенным содержанием примеси // Автореферат дисс... канд. физ. -мат. наук. Новосибирск. 1968. 23 с.
- 66. Маароос А.А. О физико-химической структуре центров в ЩГК, активированных таллием // Дисс... канд. хим. наук., Тарту. - 1972. - 150 с.
- 67. Гиндина Р.И, Эланго А.А, Хаав А.А, Маароос А.А, Цирк А.А. О физикохимической природе центров люминесценции в щелочногалоидных кристаллах // Оптика и Спектр. - 1973. - Т. 34, Вып.1. - С.117-123.
- 68. Van Sciver W.I. Role of the Thallium Dimer in the NaI(Tl) Scintillation Process // Phys. Lett. 1964. V.9, No 2. P. 97-98.
- 69. Мустафина Р.Х., Панова А.Н. Взаимодействие кислородсодержащих примесей с активатором в кристаллах NaI-TII и NaI-InI // В сб.: Монокристаллы, сцинтилляторы и органические люминофоры. Харьков, ВНИИ монокристаллов. - 1969. - Вып. 5, ч.1. - С.270-276.
- 70. Forro M. // Z. Physik. 1929. Bd.58. No 5. S. 613-620.
- 71. Вайданич В.И. Фотолюминесценция кристаллов NaI(Tl) и CsI(Tl) при низких температурах // Автор. дис... канд. физ.-мат. наук., Львов. - 1966. - 10 с.
- 72. Вишневский В.Н., Лыскович А.Б., Пидзырайло Н.С. Люминесцентные свойства кристаллофосфоров NaI(Tl) // Физика щелочногалоидных кристаллов // Рига: 1962. С. 342-345.
- 73. Fontana M.P., Van Sciver W.I., Blume H. Influence of Tl Concentration on the Luminescence of the Single Thallous Center in NaI(Tl) // Abstracts Intern. Symp. on Colour Center in Solids. Rome. - 1968. - No 63. - P. 99-100.
- 74. Uchida Y., Kato R. // J. Phys. Soc. Japan. 1959. V.14. No 6. P.1408-1410.

- 75. Панова А.Н., Мустафина Р.Х. Люминесцентные свойства монокристаллов NaI-Tl с кислородсодержащими примесями // ЖПС. - 1967. - Т.6. - № 3. - С. 370-375.
- 76. Панова А.Н, Мустафина Р.Х, Быкова Е.М. Электронные центры окраски в кристаллах NaI(Tl) // Монокристаллы и техника, Харьков, ВНИИ моно-кристаллов. 1973. Вып. 1(8). С. 33-42.
- 77. Панова А.Н., Мустафина Р.Х. Исследование влияния концентрации активатора на оптические и сцинтилляционные свойства кристаллов NaI(Tl) // В сб.: Монокристаллы и техника. Харьков: ВНИИ монокристаллов. 1970.
 Вып.1. С. 81-87.
- 78. Панова А.Н., Мустафина Р.Х. О природе центров захвата в кристаллах NaI(Tl) с кислородсодержащими примесями // Монокристаллы и сцинтилляторы. Харьков: ВНИИ монокристаллов. - 1969. - Вып.5, ч.1. - С.239-245. Мустафина Р.Х, Панова А.Н. Образование F-центров различной устойчивости в NaI(Tl) // Там же. - С.245-251.
- 79. Виноград Э.Л., Гуревич Н.Ю, Цирлин Ю.А. Исследование миллисекундных компонент послесвечения кристаллов NaI(Tl) // ЖПС. - 1979. - Т.30. - № 4. - С. 752.
- 80. Антонов-Романовский В.В. Кинетика фотолюминесценции кристаллофосфоров // М.: Наука. - 1966. - 324 с.
- 81. Kaufman R.G., Hadley W.B. // Trans. IEEE Nuc. Sci.- 1968. NS-15. P.158.
- Kaufman R.G., Hadley W.B., Hers H.N. The Scintillation Mechanism in Thallium Doped Alkali Halides // IEEE Trans. Nucl. Science. - 1970. - NS-17, No 3. - P. 82-87.
- 83. Чорний З.П. // Исследование рекомбинационной люминесценции кристаллов щелочных йодидов при возбуждении рентгеновской радиацией // Автореф. дисс... канд. физ.-мат. наук, Иркутск. - 1966. - 10 с.
- 84. Кинк Р.А., Лийдья Г.Г. Об электронно-дырочной компоненте радиолюминесценции щелочногалоидных сцинтилляторов // Тр. ИФА АН ЭССР. -1966. - № 31. - С. 142-159.
- 85. Кинк Р.А. Роль активаторных дырочных центров в рекомбинационной люминесценции щелочных йодидов // Тр. ИФА АН ЭССР. - 1972. - № 39. -С.162.
- 86. Батуричева З.Б., Гуревич Н.Ю. Исследование влияния центров захвата носителей заряда на инерционность фона спектрометров с кристаллами NaI(Tl) // Монокристаллы, сцинтилляторы и органические люминофоры. Харьков: ВНИИ монокристаллов. - 1969. - Вып.5. - Ч.1. - С. 257-261.
- 87. Долгополова А.В., Ковалева Е.Н., Кудин А.М., Панова А.Н. Природа низкотемпературных пиков термовысвечивания в кристаллах NaI(Tl) // Монокристаллические материалы. Харьков: ВНИИ монокристаллов. - 1983. - № 11. - С.125-127.
- 88. Смольская Л.П., Панова С.П. и др. ТСЛ и длительное послесвечение кристаллов NaI(Tl) // ЖПС. 1991. Т.56. № 2. С. 259-263.

- 89. Глосковская Н.К., Харамбура С.Б. Влияние примеси кислорода на люминесцентные свойства кристаллов NaI(Tl) // УФЖ. - 1975. - Т.20. - № 8. - С. 1354-1358.
- 90. Батуричева З.Б. Исследование влияния центров захвата носителей заряда на радиолюминесценцию кристаллов NaI-Tl // Автореф. дисс... канд. физ.мат. наук. Харьков. - 1967. - 16 с.
- 91. Мустафина Р.Х., Панова А.Н. Рекомбинационная люминесценция кристаллов NaI(Tl) // Изв. АН СССР, сер. физ. - 1974. - Т.38. - № 6. - С. 1254-1255.
- 92. Андрющенко А.В. Накопление радиационных дефектов при облучении кристаллов NaI(Tl) // Тез. докл. Всес. конф. по сцинтилляторам. Харьков. 1975. С.108.
- 93. Кристофель Н.Н. Теория примесных центров малых радиусов в ионных кристаллах // М.: Наука. 1974. 336 с.
- 94. Гуревич Н.Ю., Загарий Л.Б., Виноград Э.Л., Цирлин Ю.А. Влияние соотношения одинарных и сложных активаторных центров свечения на рентгенолюминесценцию преобразователей рентгеновского излучения на основе кристаллов NaI(Tl) // Тез. докл. V Всес. симп. по люминесцентным приемникам и преобразователям ионизир. излучения. Таллин. 1985. С. 194.
- 95. Fontana M.P, Van Sciver W.I. Energy Transfer and Optical Properties of Tl⁺ Centers in NaI(Tl) Crystals // Phys. Rev. - 1968. - V. 168. - No 3. - P. 960-964.
- 96. Herb G.K., Fontana M.P., Van Sciver W.J. Characteristics of the Thallous Dimer Centers in Sodium Iodide // Phys. Rev.- V. 168. No 3. P. 1000-1007.
- 97. Matsui E. Optical Properties of the Thallous Ion Centers in Sodium Iodide Thallium Crystals // J. Phys. Soc. Jap. 1967. V. 22, No 3. P. 819-830.
- 98. Нагли Л. Свечение NaI(Tl) // Изв. АН Латв. ССР, сер. физ. и техн. 1966. № 2. С. 50-56.
- 99. Виноград Э.Л., Гуревич Н.Ю, Цирлин Ю.А., Лифиц А.Л. Влияние концентрации активатора на устойчивость собственного разрешения кристаллов NaI(Tl) // Атомная энергия. 1982. Т.52. Вып.4. С. 269-270.
- 100. Шамовский Л.М, Рогожин А.А. Особенности люминесценции неорганических сцинтилляторов // Изв. АН СССР. сер. физ. - 1979. - Т.43. - № 6. - С. 1155-1161.
- 101. Вишневский В.Н., Пидзирайло Н.С. Влияние кислородсодержащих примесей и рентгеновской радиации на величину абсолютного квантового выхода и структуру спектров возбуждения фотолюминесценции кристаллов NaI(Tl) // УФЖ. - 1967. - Т.12. - № 9. - С. 1466-1473.
- 102. Гарбер П.Р., Панова А.Н., Хаам А.А., Ширан Н.В. О центрах свечения монокристаллов КІ и RbI, активированных таллием // Физика щелочногалоидных кристаллов. Труды II Всес. совещания. Рига. - 1962. - С.156-159.
- 103. Harshow I.A., Kremers U.C., Steward E.C., Warburton E.K., Hay I.O. // American Atomic Energy Commission Report. 1952. NGO. 1577.
- 104. Беляев Л.М., Галанин М.Д, Моргенштерн З.Л., Чижикова З.А. Зависимость выхода гамма- и фото- люминесценции кристаллов NaI(Tl) от концентрации таллия // Доклады АН СССР. - 1955. - Т. 105. - № 1. - С. 57-60.

- 105. Беляев Л.М., Панова В.П., Перльштейн В.А. и др. О выращивании методом Киропулоса спектрометрических кристаллов // Изв. АН СССР, сер. физ. - 1958. - Т. 22. - № 1. - С. 21-22.
- 106. Oura M. Scintillation Response of NaI-Tl // Rev. Phys. Chem. Jap. 1960. -V. 30, No 2. - P. 92-99.
- 107. А.с. 415916 СССР. Способ получения радиационно-прочных сцинтилляторов / Панова А.Н., Мустафина Р.Х., Гуревич Н.Ю. и др. - 1973. - / - Бюл. "Изобретения". - 1993. - № 7.
- Johnson P.D., Williams F.E. The Interpretation of the Dependence of Luminescent Efficiency on Activator Concentration // J. Chem. Phys. - 1950. - V.18, No 11. - P. 1477-1483.
- Murray R.B., Mayer A. Scintillation Response of Activated Inorganic Crystals to Various Charged Particles // Phys. Rev. 1961. V. 122. No 3. P. 815-826.
- 110. Перцев А.К., Писаревский А.Н., Сошин А.Д. Применение ФЭУ в одноэлектронном режиме для измерения абсолютного выхода сцинтиллятора // ЖПС. - 1964. - Т. 1, Вып.2. - С. 175-177.
- Holl I., Lorenz E., Mageras G. // IEEE Trans. Nucl. Sci. 1988.- V. 35.- No 1. - P. 105-109.
- 112. Eby F.S., Jentschke W.K. Fluorescent Response of NaI(Tl) to Nuclear Radiations // Phys. Rev. 1954. V. 96, No 4. P. 911-920.
- 113. Вишневский В.Н., Пидзырайло Н.С. Рекомбинационная люминесценция кристаллов NaI(Tl), возбуждаемая в А- полосе активаторного поглощения // Изв. вузов. Физика. - 1972. - № 7. - С. 158-160.
- 114. Буравлева М.Г., Захарин Я.А., Старцев В.И. О вхождении атомов таллия в решетку йодистого натрия // Кристаллография. 1959. Т. 4, Вып.5. С. 773-774.
- 115. Розенберг Г.Х, Птицын Г.В., Ковалева Л.В. и др. Распад твердого раствора Tl в кристаллах CsI // ФТТ. - 1979. - Т.21. - № 10. - С. 2970-2975.
- 116. Цирлин Ю.А., Мохир Е.П. Влияние микро- и макро- неоднородностей сцинтиллятора на разрешение спектрометра // В сб.: Монокристаллы, сцинтилляторы и органические люминофоры, Харьков: ВНИИ монокристаллов. - 1967. - Вып. 1. - С. 67-71.
- 117. Лыскович А.Б., Гусева Н.К. К вопросу о сложных центрах свечения в кристаллах NaI(Tl) // УФЖ. 1966. Т. 11. № 4. С. 445-446.
- 118. Шамовский Л.М. Кристаллофосфоры на основе аномальных твердых растворов внедрения // Изв. АН СССР, сер. физ. 1974. Т.38. № 6. С. 1250-1253.
- 119. Панова А.Н., Кудин А.М., Эйдельман Л.Г., Виноград Э.Л. Перспективы применения монокристаллов NaI(Tl) в томографии // Материалы VI Всесоюзного симпозиума "Люминесцентные приемники и преобразователи ионизирующего излучения", Львов. 1988. С. 141.
- 120. Панова А.Н., Шпилинская Л.Н., Косинов Н.Н. и др. Причины миллисекундного послесвечения сцинтилляционных кристаллов на основе йодидов цезия // Там же. - С. 145.

- 121. Вишневский В.Н., Лыскович А.Б. // Изв. АН СССР, сер. физ. 1974. Т. 38. № 6. С. 1266-1269.
- 122. Загарий Л.Б., Выдай Ю.Т., Цирлин Ю.А. Исследование концентрационной зависимости светового выхода детекторов на основе NaI(Tl) в области рентгеновского и мягкого гамма-излучения // В сб.: Оптические и сцинтилляционные материалы, Харьков: ВНИИ монокристаллов. - 1982. - № 9. - С. 89-90.
- 123. Загарий Л.Б., Выдай Ю.Т. Исследование нелинейности светового выхода детекторов рентгеновского излучения // Там же. - С. 154-155.
- 124. Цирлин Ю.А. Спектрометрические сцинтилляционные блоки детектирования // В сб.: Физика и химия органических и неорганических материалов, Харьков: ВНИИ монокристаллов. - 1986. - № 16. - С. 8-20.
- 125. Киреев В.А. Методы практических расчетов в термодинамике химических реакций // М.: Химия. 1970. С. 72.
- 126. Карапетьянц М.Х., Карапетьянц М.Л. Основные термодинамические константы неорганических и органических веществ // М.: Химия. - 1968. -С. 470.
- 127. Термические константы веществ. Под редакцией Глушко В.П. // М.: ВИ-НИТИ. - 1965. - Вып. 1. - С. 145.
- 128. Термические константы веществ. Под редакцией Глушко В.П. // М.: ВИ-НИТИ. - 1981. - Вып. 10. - С. 299.
- 129. Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии // Киев: Наукова думка. 1974. С. 46, 388.
- 130. Klee W.E. The IR-spectrum of the iodate ion in the potassium iodide lattice // Spectrochimica Acta. - 1970. - V. 26A, No 5. - P. 1165-1169.
- 131. Кондиленко И.И., Цященко Ю.П., Пасечный В.А. Инфракрасные спектры и локальная симметрия примесного иона IO₃⁻ в щелочно-галоидных кристаллах // УФЖ. 1974. Т. 19. № 7. С. 1169-1173.
- Ibers I.A. Structure of NaIO₃ Crystal // Acta Crystallograph. 1956. V. 9. -P. 225.
- 133. Бойко В.В., Кушнеренко И.Я., Ковалева Л.В., Нагорная Л.Л. Структура ИК спектров поглощения кристаллов CsI с примесью кислородсодержащих анионов IO₃[−] и SO₄^{2−} // ФТТ. - 1987. - Т. 29. - Вып. 1. - С. 104-109.
- 134. Gwin R., Murray R.B. Scintillation process in CsI(Tl). Comparison with activator saturation model. Emission Spectra and the possible role of self-trapped holes // Phys. Rev. - 1963. - V. 131, No 2. - P. 501-507, 508-512.
- 135. Лыскович А.Б., Чорний З.П., Гусева Н.К. // Изв. АН СССР, сер. физ. 1965. Т. 29, № 3. С. 423-424.
- 136. Ребане Л.А. Люминесценция примесной молекулы О₂⁻ в щелочно-галоидных кристаллах // Труды ИФА АН ЭССР. - 1968. - № 37. - С. 14-45.
- 137. Смирнов Н.Н., Крайнюков Н.И. Термодинамика процессов термического разложения иодистого натрия кислородсодержащими компонентами воздуха // В сб.: Монокристаллы, сцинтилляторы и органические люминофоры. Харьков, ВНИИ монокристаллов. - 1969. - Вып. 5, ч.1. - С. 59-68.

- 138. Смирнов М.В., Ткачева О.Ю. Термодинамика реакций кислорода с расплавленными хлоридами натрия, калия и цезия // Расплавы. - 1991. - №3. -С. 66-73.
- 139. Чайковский Э.Ф., Давыденко Н.И, Сухостат В.А, Смирнов Н.Н. и др. Исследование газового состава полостей в кристаллах NaI(Tl) // Методы получения и исследования монокристаллов и сцинтилляторов. Харьков, ВНИИ монокристаллов. - 1980. - № 5. - С. 44-48.
- 140. Пфанн В.Г. Зонная плавка // М.: Мир. 1970. 368 с.
- 141. Добровинская Е.Р., Мохир Е.П., Эйдельман Л.Г. Исследование факторов, влияющих на энергетическое разрешение сцинтилляционных счетчиков с кристаллом NaI(Tl) // УФЖ. - 1961. - Т. 6, № 5. - С. 608-613.
- 142. Алукер Н.Л., Эцин С.С. Сопоставление энергетических выходов собственной и активаторной радиолюминесценции сцинтилляционных кристаллов // Люминесцентные приемники и преобразователи ионизирующего излучения. Материалы VI Всесоюз. симпозиума. Львов. – 1989. - С. 112.
- 143. Абдрахманов М.С. Быстрая люминесценция ионных кристаллов при возбуждении импульсом электронов // Автореф. дис... канд. физ.-мат. наук. Саласпилс. 1991. 16 с.
- 144. Лахоцкий Т.В., Кушнир О.Б. Исследование процесса запасания светосуммы в кристаллах NaI(Tl) при оптическом возбуждении в области активаторных полос поглощения // УФЖ. - 1971. - Т. 16, № 7. - С. 1209-1211.
- 145. Бобкова И.Б. Запасание энергии в KI(Tl) при возбуждении в А- полосе // Опт. и Спектр. 1987. Т. 62. Вып.2. С. 79-84.
- 146. Чернов А.А., Темкин Д.Е., Мельникова А.М. Теория захвата включений при росте кристаллов из расплава // Кристаллография. - 1976. - Т. 21. - Вып. 4. - С. 652-660.
- 147. Дзюба А.С., Солунский И.В. Коагуляция газовых пузырьков на фронте кристаллизации расплава // Проблемы получения и исследования монокристаллов. Харьков, ВНИИ монокристаллов. 1988. № 21. С. 43-48.
- 148. Ильясов Н.Н., Щемелева Г.Г., Бергман А.Г. Термический анализ системы NaI-Tll // Ж. неорг. хим. 1961. Т. 4. С. 669.
- 149. Исаенко В.А., Киргинцев А.Н., Смирнов Н.Н. Равновесные коэффициенты распределения ТІІ при направленной кристаллизации NaI // Изв. сиб. отд. АН СССР, сер. хим. наук. - 1977. - № 4. - Вып. 2. - С. 146-147.
- 150. Виноград Э.Л., Цирлин Ю.А., Гуревич Н.Ю. Влияние температуры на собственное энергетическое разрешение кристаллов NaI(Tl) // ПТЭ. 1980. № 3. С. 67-70.
- 151. Sabharval S.C., Ghash B. High Temperature Performance Characteristics of NaI(Tl) Detectors // Nucl. Inst. Meth. 1982. V. 195, No 3. C. 613-616.
- 152. Бельский А.Н, Васильев А.Н., Гектин А.В. и др. О природе быстрой ультрафиолетовой люминесценции кристаллов CsI // Препринт Института монокристаллов АН Украины, Харьков. - 1990. - ИМК-90-26. - 16 с.
- 153. Хейнман Г.Д. К вопросу о распределении активатора в NaI(Tl)-фосфоре // Кристаллография. - 1960. - Т. 5. - Вып. 6. - С. 960-961.

- 154. Реми Г. Курс неорганической химии. В 2-х частях // М.: Мир. 1974. Т.1. - С. 511.
- 155. Goldshmidt V.M. Uber die Gottinger Isimorphic // Besprechund Chemie. 1944. Bd. 57. № 1. S. 59-61.
- 156. Урусов В.С. Проблема изоморфных замещений атомов в кристаллах // М.: Наука. 1971. С. 62.
- 157. Урусов В.С., Кравчук И.Ф. Расчет коэффициентов распределения изовалентных примесей при кристаллизации ионных расплавов // В сб.: Массовая кристаллизация. М: Наука. - 1975. - № 1. - С. 71-81.
- 158. Kravchuk I.F., Urusov V.S. Theoretical calculation of partition coefficient of isovalent impurities // Kristall und Technic. 1978. V. 13. № 10. P. 1195-1202.
- 159. Урусов В.С. Энергетическая кристаллохимия // М: Наука. 1979. 298 с.
- 160. Ziet M., Wilcox, Dexter M. Fractional solidification // Inc. 1967. № 4. 714 p.
- Burton J.A., Prim R.C., Slicher W.P. The distribution of solute in crystal growth from the melt. I. Theoretical // J. Chem. Phys. - 1953. - V. 21. - No 11. -P. 1987-1991.
- 162. Киргинцев А.Н., Аввакумов Е.Г. О концентрационной зависимости коэффициента распределения // ФТТ. - 1964. - Т. 6. - № 5. - С. 1547-1548.
- 163. Сиверстен Д.М., Никольсон М.Е. Структура и свойства твердых растворов // М: Наука. - 1964. – 239 с.
- 164. Кривоглаз М.А. Дефекты в твердых растворах, стабилизирующиеся при понижении температуры // ФТТ. 1970. Т. 12, № 8. С. 2445-2451.
- 165. Hartmann H. Uber Enststehung und Eigenschaften von Absorbtionsmischkristallen // Zeits. Chem. - 1964. - Bd. 4, No 6. - S. 216-226.
- 166. Шведова В.П. Радиохимия и химия ядерных процессов // Л.: Изд. хим. Литературы. 1960. С. 73.
- 167. Харди Ф.К., Хилл Т. Дж. Процесс выделения // Успехи физики металлов, М: Наука. - 1958. - Ч.П. - С. 285-329.
- 168. Кан Р. Физическое металловедение // М: Мир. 1968. Вып. 2. 219 с.
- 169. Хачатурян А.Г. Теория пространственно периодических распределений фаз при распаде твердых растворов // ЖЭТФ. 1970. Т. 58. № 1. С. 175-190.
- 170. Hartmanova M., Vlasek G. Role of dislocations in the Ageing of NaCl:SrCl // J. Physique. 1976. V. 37, No 7. P. 601-603.
- 171. Андреев Г.А., Климов В.А. Зародышеобразование в деформированных кристаллах KCl с примесью // ФТТ. 1975. Т. 17. № 11. С. 2783-2785.
- 172. Under B., Perlman M. Activation energies of impurity-vacancy dipoles in alkali halides // Phys. Rev. B. Solid State. - 1974. - V. 10, No 7. - P. 3692-3696.
- 173. Symmons M.F., Basset G.A. The early stages of aggregation of Mn²⁺ in NaCl // Brit. J. Appl. Phys. 1966. V. 17, No 2. P. 607-613.
- 174. Jacaman H.J, Basset G.A. Gold decoration of precipitates in doped alkali halide surface // J. Appl. Phys. - 1976. - V. 47, No 6. - P. 2313-2315.

- 175. Бураго В.А., Звинчук Р.А. Сосуществование метастабильных фаз при низкотемпературном распаде твердых растворов NaCl:CaCl₂ // Кристалло-графия. 1970. Т. 15, № 5. С. 979-984.
- 176. Murti Y.V., Usha V. Theoretical study of monovalent impurities and impurity pairs in alkali crystals // Cryst. Lat. Def. 1977. V. 7, No 1. P. 31-37.
- 177. Vegard L., Dale H. Untersuchungen uber Mischkristalle und Legierungen // Kristallogr. - 1928. - B.67. - S. 148-162.
- 178. Zen E-an. Validity of "Vegard's Law" // Am. Mineral. 1956. V. 41. P. 523-524.
- 179. Урусов В.С. Геометрическая модель отклонений от правила Вегарда // Ж. структ. хим. 1992. Т. 33. С. 80-92.
- Костикова Г.П., Костиков Ю.П. Применение правила Вегарда при описании твердых растворов // Неорганические материалы. - 1993. - Т. 29.- № 8. - С. 1136-1138.
- 181. Франк-Каменецкий В.А. Природа структурных примесей в минералах // Л.: Изд-во ЛГУ. 1964. 238 с.
- 182. Basset G.A. New technique for decoration of cleavage and slip steps on ionic crystal surface // Phyl. Mag. 1958. V. 3, No 5. P. 1042-1054.
- 183. Кононенко В.Г. Механизмы и кинетика релаксации локализованных напряжений в кристаллах // Дисс... докт. физ.-мат. наук. Харьков. 1982.
- 184. Иванов Н.П., Кисиль И.И, Любинский В.Р., Смирнов Н.Н. Исследование тепловых полей при выращивании кристаллов NaI(Tl) // Тез. докл. 7-й Всес. конф. по сцинтилляторам. Харьков, ВНИИ монокристаллов. 1975. С. 77.
- 185. Розенберг Г.Х., Чайковский Э.Ф. О зависимости выхода люминесценции кристаллов CsI(Tl) и CsI(Na) от концентрации активатора // В сб.: Монокристаллы и сцинтилляторы, их получение и свойства. Харьков: ВНИИ монокристаллов. - 1979. - Вып. 3. - С. 151-154.
- 186. Ткаченко В.Ф., Ром М.А., Бабиченко А.А, Кузнецов В.П. Трех кристальный рентгеновский дифрактометр для исследования монокристаллических материалов // ПТЭ. – 1992, № 2. - С. 277-278.
- 187. Егранов А.В., Раджабов Е.А. Спектроскопия кислородных и водородных примесных центров в ЩГК // Новосибирск: Наука. Сибирское отделение. -1992. - 159 с.
- 188. Старжинский Н.Г. Термостимулированные процессы в кристаллах йодидов щелочных металлов // Авт. дис... канд. физ.-мат. наук, Черновцы. - 1986. - 17 с.
- 189. Выдай Ю.Т., Загарий Л.Б., Цирлин Ю.А. Стабильность спектрометрических характеристик детекторов слабопроникающих ионизирующих излучений // ПТЭ. - 1990. - № 2. - С. 74-76.
- 190. Панова А.Н, Кудин А.М., Долгополова А.В. Термическая стабильность электронных и дырочных активаторных центров окраски в кристаллах NaI(Tl) // Оптика и Спектроскопия 1987. Т. 63, Вып. 2. С. 444 445.

- 191. Кудин А.М., Панова А.Н., Удовиченко Л.В. Влияние содержания активатора на изменение радиолюминесценции и сцинтилляционных параметров кристаллов NaI(Tl) // В сб.: Сцинтилляционные материалы. Харьков, ВНИИ монокристаллов. 1987. № 20. С. 30-35.
- 192. Пшисуха А.М., Долгополова А.В., Кудин А.М. Природа примесных центров в кристаллах йодистого натрия, активированных марганцем // В сб.: Рост и свойства кристаллов. Харьков, ВНИИ монокристаллов. 1980. №6. С. 28-31.
- 193. А. с. 1402108 СССР. Способ определения годности сцинтилляционного материала / Долгополова А.В., Кудин А.М., Панова А.Н. / Заявл. 1988, Опубл. 1993. Бюл. «Изобретения». № 10.
- 194. А. с. 1429601 СССР. Способ получения сцинтилляционного материала / Кудин А.М., Панова А.Н., Моргацкий Е.К., Угланова В.В. / Заявл. 1988, Опубл. 1993. Бюл. «Изобретения». № 9.
- 195. Кудин А.М., Долгополова А.В., Угланова В.В. Роль активаторных центров окраски в изменении сцинтилляционных параметров детекторов на основе кристаллов NaI(Tl) // Тез. докладов Всесоюзн. конференции по сцинтилляторам, Харьков. 1986. С. 7.
- 196. Заславский Б.Г., Кудин А.М., Панова А.Н., Проценко В.Г. Однородность распределения активаторных центров в крупногабаритных кристаллах NaI(Tl) // Тез. докл. VIII Всес. конф. по методам получения и анализа высокочистых веществ: Горький. - 1988. - С. 170-171.
- 197. Кудин А.М. Активаторные центры захвата носителей заряда в кристаллах NaI(Tl) // Монокристаллические материалы. Харьков, ВНИИ монокристаллов. - 1986. - № 17. - С. 153.
- 198. Долгополова А.В., Кудин А.М., Панова А.Н. Низкотемпературные активаторные центры захвата в кристаллах NaI(Tl) // Люминесцентные приемники и преобразователи ионизирующего излучения. Тез. докл.: Таллин. 1985. С. 193.
- 199. Панова А.Н., Кудин А.М., Эйдельман Л.Г., Виноград Э.Л. Перспективы применения монокристаллов NaI(Tl) в томографии //Люминесцентные приемники и преобразователи ионизирующего излучения. Тез. докладов VI Всесоюзн. симпозиума: Львов. 1989. С.141.
- 200. Кудин А.М., Сулыга В.А., Панова А.Н., Угланова В.В. Особенности кристаллов NaI(Tl), выращенных в атмосфере кислорода // Тез. докл. Всесоюзн. конф. по сцинтилляторам. Харьков. 1986. С. 39.
- 201. Kudin A.M., Panova A.N. Stimulation and Suppression of Colour Centers Formation in NaI(Tl) Crystal // Materials Research Society Symposium, San Francisco. - 1994. - P. 96.
- 202. Panova A.N., Kudin A.M. Effect of Activator Concentration and Growth Conditions on Spectrometric Parameters of NaI(Tl) // Abstracts of Intern. Conf. SCINT-95, Delft, Netherlands. - 1995. - P. 196.