NEPHELAUXETIC EFFECT IN LUMINESCENCE OF Cr³⁺ DOPED LITHIUM NIOBATE AND GARNETS

A. Suchocki¹, S. W. Biernacki¹, A. Kaminska¹, and L. Arizmendi²

¹ Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland ² Depertamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain

The luminescence of Cr^{3+} ions in laser materials that experience strong crystal field strength is dominated by relatively sharp luminescence lines associated with the ${}^{2}E --> {}^{4}T_{2}$ transitions (so called R-lines). Energy of the ${}^{2}E$ level in the d³ electron system, according to the Tanabe-Sugano theory, increases a little with increase of the strength of the crystal field. The strength of crystal field experienced by the dopand ions can be controlled by application of hydrostatic pressures, which decreases interatomic distances. The high-pressure low-temperature Cr^{3+} luminescence experiments in the diamond anvil cell (DAC) show, contrary to the prediction of the Tanabe-Sugano theory, that the energy of the ${}^{2}E$ level of Cr^{3+} ions decreases slightly with increase of the crystal field Racah's repulsion parameters B and C due to covalency of bonds between the central ion and ligands. An enhancement of the nephelauxetic effect, responsible for the red shift of the R-lines, is attributed to greater covalency due to a reduction of bond lengths with pressure.

Although the effect is well understood qualitatively and also applied for pressure calibration in DAC technique **ruby** R-line luminescence), its quantitative description is far from completeness and clarity. In this paper we would like to present a new approach to this problem, based on Harrison theory of ionic-covalent bonding, formally considered in the context of band structure. A model is developed for quantitative explanation of the ephelauxetic effect in Cr^{3+} ions luminescence, taking into account valence orbitals of nearest and second nearest eighbor atoms. The results are used for description of the effect in chromium doped lithium niobate and garnet **crystals**, although the model can be also applied for the other systems. The results are in very good agreement with the luminescence experimental data, obtained in the DAC with pressures up to 150 kbar.

RADIATION DEFECTS CREATION IN CsI(TI) CRYSTALS AND THEIR LUMINESCENT PROPERTIES

L.Trefilova, T.Charkina, A.Kudin, N.Kosinov, A.Mitichkin

STC "Institute for Single Crystals" 60 Lenin Ave., 61001 Kharkov, Ukraine

Rediation defects creation processes in CsI(Tl) crystal have been studied. It was determined, that identical activator electron color center may be formed in two ways: (i) the diffusion of the anionic vacancy to an activator ion, an electron was captured by, and (ii) the diffusion of the F-center to an activator ion. Process is stimulated by the presence of borate ions in CsI(Tl) crystals, process (ii) - of carbonate and hydroxyl ons. Irrespective of admixture composition the same bands at 355, 390, 430, 470, 520, 560, 840, 975 nm were observed in absorption spectra of irradiated CsI(Tl) crystals. The number of these bands exceeds the member of the bands typical for electronic transitions between the neutral Tl center states. If a CsI(Tl) crystal reated by ionizing radiation is illuminated by the mercury lamp emission, break-down of 430, 520, 560, 840, 15 nm bands will be accompanied by the increase in the intensity of 390, 470 nm bands in the absorption meetrum. The model, according to which an electron is captured by the defect being an activator ion close to mionic vacancy, is considered in this paper. It was found that the luminescence can be excited at room emperature in radiation induced at 355, 390, 470 nm bands as well as in the typical for CsI(TI) crystal mallium monomers absorption of 200-300 nm region. The luminescence maximum is shifted to the longwavelength region compared with the luminescence of non-irradiated crystal. At 80K the emission can be excited in the 500-560 nm region as well. The luminescence spectrum of irradiated crystal consist of several rends. The most long wavelength band with the maximum at 670 nm is typical for irradiated crystals only. another band with the maximum at 590 nm is also observed in the spectrum of the non-irradiated crystal. The luminescence of thallium monomers also appears in the luminescence spectrum of irradiated crystals. mey were considerably distorted by the radiation defects absorption. Probable nature of the luminescence at m was considered. Research supported by STCU Project No 921.