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A self-adjusting zero-order Brown’s 
model has been devised. This model 
makes it possible to predict with high 
accuracy not only fires in the premises 
but also irreversible processes and phe-
nomena of a random and chaotic nature 
under actual conditions. The essence of 
the self-adjusting model is that, based 
on Kalman’s approach, it is proposed 
to set the smoothing parameter for 
each time moment. Such a parameter 
is determined depending on the result-
ing current forecast error, taking into 
consideration the real and unknown 
dynamics of the studied series and 
noise. That does not require the selec-
tion of the smoothing parameter cha
racteristic of known models. In addi-
tion, the proposed Brown’s model, 
unlike the known modifications, does 
not require setting a dynamics model of 
the level of the examined time series. The 
self-adjusting model provides negligible 
errors and efficiency of the forecast.  
The operability of the devised model 
was checked using an example of the 
experimental time series for the current 
measure of the recurrence of the incre-
ments of the state of the air medium  
in the laboratory chamber during alco-
hol combustion. As quantitative indi-
cators of the quality of the forecast 
error, the current values for the square 
and absolute values were considered. 
It has been established that the cur-
rent square of the forecast error is more 
than six orders of magnitude smaller 
compared to the case of a fixed smooth-
ing parameter from a beyond-the-limit 
set. However, the current square of the 
forecast error for abrupt changes in the 
dynamics of the series level is half that 
of the fixed parameter of the beyond-
the-limit set. It is noted that the results 
confirm the feasibility of the proposed 
self-adjusting Brown’s model
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1. Introduction

Forecasting (F) is considered one of the significant stages 
in resolving the issue of ensuring sustainable and effective 

development of the socio-economic life of society. The basis 
of F is usually the models of predicted processes and phe-
nomena (PPs). All PPs can be categorized into two main 
classes – reversible and irreversible. Models of reversible PPs 
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are based on the stability of their certain probabilistic cha
racteristics over time. Therefore, the basis of reversible PPs 
F is usually the analysis of past states and their subsequent 
extrapolation. In this regard, the models of reversible PPs are 
described on the basis of representations accepted in prob-
ability theory and mathematical statistics. For irreversible 
PPs, the stability of probabilistic characteristics evolves over 
time or may be absent at all. This significantly complicates 
the F of irreversible PPs and creates the task of developing 
self-adjusting models for them. The relevance of this issue 
is further determined by the fact that most of the real PPs 
that violate the sustainable development of the sphere of 
socio-economic life of society are irreversible. An important 
type of an actual irreversible PP is fire. Fire can occur both in 
various ecosystems [1] and at production facilities [2, 3]. The 
most dangerous ones are the fires in the premises (FP) [4]. 
This is explained by the fact that FPs are massive and cause 
significant damage not only to human life [5] but also to 
objects [6], as well as the environment [7]. More than 90,000 
lives are claimed by FPs each year, and the material damage 
they cause is measured in trillions of dollars. In this regard, 
the task of devising effective models for the F of irreversible 
PPs becomes particularly relevant.

2. Literature review and problem statement

It is known that the tendencies of irreversible PPs 
change over time (are evolutionary in nature) or are absent 
at all (have a chaotic character). The F of such PPs are ex-
tremely difficult. The best result for this type of PPs is given 
by adaptive models. A widely used in various applications is 
the adaptive zero-order Brown’s model (ZOBM) [8]. Fol-
lowing the ZOBM, F is determined through the previous 
forecast, which is corrected by the deviation of the current 
observation from the previous forecast. This ensures that the 
ZOBM is adapted to new incoming information. ZOBM is  
a one-parameter adaptive model whose properties are deter-
mined by the value of h, the smoothing parameter, which acts 
as a weight for the current corrective deviation. In general, 
ZOBM is used for the F of stationary [9] and evolutionary 
PPs [10]. For stationary PPs, h takes fixed values from the 
classical set between 0 and 1. In this case, the specific value 
of the fixed parameter h is proposed to be selected experimen-
tally for each type of a time series (TS). There are more than 
a dozen ways to select a parameter from the classical set [11]. 
In [8], it is proposed to determine the value of h experimen-
tally, based on minimizing the sum of squares of current 
errors in F. The limitations of this technique include the need  
to repeatedly determine the forecast for the same TS data at 
different fixed values of h and calculate the sum of the squares 
of the current F errors. That means that the technique 
from [8] is complex and does not allow it to be implemented 
in real time for the F of PPs of an evolutionary nature. The 
development of a self-adjusting ZOBM and the smoothing 
parameter are not considered or investigated in [8–11]. 
In [12, 13], it is proposed to determine the value of h in 
accordance with the inequality 0.1<h<0.3. This range is not 
justified by anything. At the same time, those recommenda-
tions are limited mainly to the F of stationary TS with the 
presence of a clear trend. It is noted that in most cases good 
F results occur at h = 1. However, if h<0.3 are preferred, this 
is a sign of the non-stationarity of TS, and indicates the need 
for more complex models. In [14], it is noted that with a suf-

ficiently large dispersion of noise, the values of h should not 
exceed 0.2. At the same time, for each specific TS, the choice 
of the value of h should be made taking into consideration the 
goal of F. In [8], it is noted that the solution to the problem 
of choosing the optimal value of h is associated with an as-
sessment of the current accuracy of F. If the high accuracy of 
F is provided at values of h close to 1, then this indicates the 
incorrectness of the corresponding ZOBM. At the same time, 
a self-adjusting ZOBM is not considered. For the F of PPs of 
evolutionary nature, paper [15] recommended choosing the 
values for the parameter h in accordance with the inequa
lity 0<h<1, and for PPs of a chaotic nature – 1<h<2. It is 
indicated that for each specific TS there is an optimal value 
of the parameter h, determined by the properties of the pre-
dicted TS. There is also an approach reported in [16], based 
on an analytical solution to the inverse problem h = 2/(k+1), 
where k is the number of steps included in the smoothing 
interval. In this case, the value of k is determined empirically. 
This approach is limited to the series level model as a random 
constant. The approach to the choice of the optimal smooth-
ing parameter based on the Hurst indicator, calculated by 
TS, is set out in [17]. The main limitation of this approach 
is the complexity and availability of stationary TS segments 
for calculating the Hurst index, as well as the impossibility 
of applying the approach in real time. A self-learning model 
of short-term F of the socio-economic dynamics based on the 
apparatus of the theory of functions of complex variables is 
considered in [18]. An important advantage of this model 
in comparison with other modifications of ZOBM is that it 
does not require an a priori setting of the type of trend of 
the TS under study. However, the limitations of the model 
include its complexity and high sensitivity to the accuracy 
of the choice of the initial values for the complex smoothing 
coefficient. Improving the accuracy of the short-term F of  
a dangerous irreversible process in the form of FP based on 
the use of a modified ZOBM, in which an a priori model of 
the dynamics of the level of the studied TS for the corre-
sponding fire hazards (FHs) is presented in [19].

Known PP F models are limited to deterministic proces
ses to describe the basic FHs [20]. This means that the known 
FP F models are limited to the class of reversible determi
nistic PPs without taking into consideration the randomness 
factor. The scope of use of such models is limited mainly to 
the design stage and evaluation of the effectiveness of the 
proposed fire prevention measures. The real F of irreversible 
PPs and self-adjusting ZOBMs are not considered. However, 
study [21] notes that the real air environment in a fire is  
a complex dynamic system. Such a system is characterized 
by the properties of nonlinearity, self-organization, and dis-
sipation. Ignoring these properties leads to significant errors 
in the assessment of the corresponding TS and PP F [22]. At 
the same time, [23] emphasizes that the current dynamics of 
FHs are of paramount importance for PP F. In this case, the 
technologies adopted in the nonlinear dynamics of complex 
systems are constructive [24]. Modern techniques of quan-
titative analysis of nonlinear dynamics of complex systems 
under non-stationary conditions are presented in [25]. How-
ever, in [24, 25], PP F on the basis of techniques of nonlinear 
analysis of the state of FH under actual conditions are not 
considered and not investigated. At the same time, there are 
several works in which experimental studies of the emergence 
and development of an irreversible process in the form of FP 
are considered. For example, in [26], the characteristics of 
the process of FP occurrence are experimentally investigated.  
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Paper [27] reports the results of experimental studies of the 
effect of thermal radiation on the rate of heat generation by 
combustible materials. A detailed study of the rate of heat 
transfer at FP is performed in [28]. In [28], it is noted that 
the dynamics of the state of FH in the occurrence of FP is 
complex and non-stationary. Improving the efficiency of 
detection of FP based on known technologies is considered 
in [29]. At the same time, models of FP F based on the dy-
namics of the state of FHs are not investigated [30]. In [31], 
it is proposed to apply self-adjusting techniques for detecting 
fires under conditions of non-stationarity of FH states. The 
main limitation of those techniques is that self-adjustment 
is made on the basis of averaged values of individual pa-
rameters of the state of FHs. Taking into consideration the 
non-stationarity of the parameters, autocorrelations and pair 
correlations of FHs in the model chamber are investigated 
in [32]. At the same time, it is noted that the current values of 
FHs, and not their correlations, are more informative for de-
tecting fires. Technologies suitable for identifying irreversible 
processes, based on the analysis of the current state of FHs, 
are considered in [33]. However, those techniques are limited 
to the consideration of a stationary model of FH states in the 
development of irreversible processes. Such a model limits 
the use of techniques [33] for the F of irreversible PPs under 
actual conditions. The technology of identifying irreversible 
processes under the conditions of non-stationary nature of 
FH states is considered in [34]. However, this technique 
is based on the use of the Fourier transform to stationary 
fragments of non-stationary dynamics of FH states. At the 
same time, it is difficult to isolate stationary fragments in 
the non-stationary dynamics of FH states in the event of 
an irreversible process. The technique of frequency-time 
identification of nonlinear systems for identifying the noted 
features of FHs is considered in [36, 37]. However, it is noted 
that those technologies are complex and do not allow them to 
be used for the F of irreversible PPs under actual conditions. 
In [38], the frequency-time technique for estimating dyna
mics of the state of FHs at ignition is considered in detail. It 
is noted that this technology is also quite complex and does 
not provide operational F of FPs. For operational F of FPs, it 
is proposed in [39] to use the ZOBM for the current measure 
of recurrence of increments of FH states. The advantage of 
this model is that on its basis, the F of TS with arbitrary level 
dynamics is possible. The quality of F, in this case, depends 
on the value of the exponential smoothing parameter and the 
real dynamics of the level of the studied TS [40]. In [15], it 
is shown that to improve the quality of F of irreversible PPs, 
the classical set for the smoothing parameter is advisable to 
expand. Based on this, paper [41] reports a study into the 
quality of F of FP based on the use of ZOBM for the smooth-
ing parameter from the classical and beyond-the-limit sets. 
It is confirmed that in the case of a beyond-the-limit set, the 
F quality indicators increase. However, it is noted that the 
quality of F is limited by the real dynamics of the irreversible 
process and the selected smoothing parameter in the ZOBM. 
At the same time, a self-adjusting ZOBM is not considered.

Thus, the F of irreversible PPs presents a particular diffi-
culty, which is due to the lack or violation of the stability of 
the statistical characteristics for the TS of the PP indicators 
under consideration. The F of such PPs can be carried out on 
modifications of ZOBM. This model is adaptive and makes it 
possible, at certain values of the parameter h, to predict TS 
with arbitrary and a priori unknown dynamics of the level. 
When one selects the parameter h from a beyond-the-limit 

set, one can predict TS with the dynamics of the level of 
evolutionary and chaotic nature. However, the accuracy of 
the forecast depends on the specific dynamics and the given 
value of the parameter h. The well-known self-learning model 
is designed for short-term forecasting of the particular class 
of PPs from the socio-economic area. At the same time, this 
model is complex and has a high sensitivity to the accuracy of 
setting the initial values for a complex smoothing coefficient. 
The self-adjusting model of the F of irreversible PPs with 
arbitrary and a priori unknown dynamics for forecasting FP 
is not considered and investigated in the cited sources. It is 
established that the dynamics of FH states in FP has a com-
plex nonlinear character, depending on the real conditions of 
ignition. To detect fires, most of the known technologies are 
complex, have limited sensitivity and efficiency. For this rea-
son, their use for the F of FP is problematic. It is noted that 
technologies based on techniques of nonlinear dynamics are 
constructive [40, 41]. It is indicated that the preferred for the 
F of PPs are forecasting technologies based on ZOBM [40].  
In this regard, an important and unresolved part of the 
problem under consideration is the construction of a self-ad-
justing ZOBM, which could be used to predict PPs under 
actual  conditions.

3. The aim and objectives of the study

The aim of this work is to devise a self-adjusting zero- 
order Brown’s model for predicting irreversible processes  
and phenomena.

To accomplish the aim, the following tasks have been set:
– to theoretically substantiate the self-adjusting zero-or-

der Brown’s model, designed to predict irreversible processes 
and phenomena;

– to check the operability of the devised model using an 
example of the experimental time series of the given indica-
tor, determined on the basis of the current values of the main 
fire hazards (smoke density, temperature, carbon monoxide 
concentration) for the air environment in the laboratory 
chamber when alcohol ignites.

4. The study materials and methods

The object of this study is a self-adjusting ZOBM for the 
F of irreversible PPs (including real FPs). The subject of our 
research is the experimental current errors in the F of PPs 
for the self-adjusting ZOBM when measuring the FHs of  
the air environment in the laboratory chamber during alco-
hol ignition. A detailed description of the materials, methods, 
and procedure of the original study is presented in [41]. We 
studied the current errors in the forecast of FPs one step 
ahead based on data from a laboratory experiment. The ex-
periment involved the forced ignition of a test substance in 
the form of alcohol in a chamber imitating the corresponding 
non-airtight room. Combustible material was selected based 
on the fact that alcohol has a maximum ignition rate and 
makes it possible to simulate explosions in premises during  
a fire. Errors in F were estimated by the values of the current 
square and absolute F error. Data registration and processing 
were carried out using a PC. Specially developed software 
was used to record the data. Data processing was carried out 
on the basis of the software developed for the computational 
environment Mathcad 14 (USA).
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5. The results of devising a self-adjusting model  
for forecasting irreversible processes and phenomena 

5. 1. Theoretical substantiation of the Brown’s self-ad-
justing forecast model

ZOBM is widely used in practice for F various PPs. The 
widespread use of this model is due to its simplicity and clear 
physical meaning of the F procedure. Features of the use of 
ZOBM for the F of early fires and FPs are considered in [39]. 
An important advantage of ZOBM is the ability to adapt to 
destabilizing factors in the studied TS [42]. At the same time, 
the adaptability of the model and the accuracy of F the un-
known level of the TS under consideration are determined by 
only one parameter – the model’s smoothing parameter. The 
adaptability property of such a model is especially important 
in F both irreversible PPs as a whole and FPs. When ignit-
ing materials in the premises, the dynamics of the state of 
the air environment, determined by FH, are complex and of  
a priori not known random nature. Therefore, it is the ZOBM 
that should be considered more suitable for forecasting PPs.  
In general, by following a given model, the examined TS for 
an arbitrary air medium FH can be defined as:

s T ni i i= + , 	 (1)

where Ti is an unknown and time-dependent on a discrete 
point i level of TS for an arbitrary FH; ni is the value of ran-
dom noise at moment i. 

For TS (1), ZOBM can be represented as:

P d Ti i( ) =


, 	 (2)

where Fi(d) is the F of TS of the unknown level (1) at the 
moment i+d executed at moment i; 



Ti  is the estimation at the 
moment i of the time of the level of TS (1) for an arbitrary FH. 

In ZOBM (2), an exponentially smoothed mean value for 
current TS measurements (1) is usually used as an estimate 
of 


Ti ,  determined from the following recurrent formula:

 

T hs h Ti i i= + −( ) −1 1,	 (3)

where h is the exponential smoothing parameter; si is the mea-
sured value of TS (1) at moment i; 



Ti−1  is the exponentially 
smoothed mean TS (1) at a discrete time i–1 (F at time i–1).

For the F of irreversible PPs, the short-term forecast is 
of particular interest – that is, F one step ahead. That means 
that for the F of irreversible PPs, in expression (2), the value 
of d = 1. It should be noted that in this case, the F of FP will 
be based only on exponentially smoothed average values  
of TS (1), the error of which, in turn, will depend on a single 
parameter h of smoothing. In this case, the error in F the FP 
will be completely determined by the error of exponential 
smoothing, as well as the error of inconsistency of model (1) 
with the real TS, determined by the corresponding indicators 
of FH. In accordance with expression (3), F for the current 
observation step is determined using the previous forecast 
and the current value of the series, which are pre-weighed 
with the weights determined in accordance with the specified 
parameter h of smoothing. h is often interpreted as a parameter 
that determines the adaptive properties of ZOBM. At h = 0, the 
model is non-adaptive. In this case, the forecast value of the TS 
for the current measurement step coincides with the forecast 
value of the series in the previous step. At h = 1 – ZOBM is 
fully adaptive. In this case, the predicted value of the series 

for the current measurement step coincides with the measured 
value of the series at the current step. In [43], it is noted that 
the greater the value of h, the greater the contribution of the 
latter measurements to the formation of the exponential mean. 
The influence of the initial conditions of F on the formation 
of the exponential mean, in this case, decreases rapidly. With  
a small value of the parameter h, the exponential mean is 
formed taking into consideration a large number of past mea-
surements. In this case, the influence of past measurements on 
the exponential mean decreases much more slowly.

That means that the considered ZOBM (2), taking into 
consideration (3), when choosing the smoothing parameter 
from the classical set, is designed for the F of predominantly 
homogeneous stationary TS and, therefore, is not suitable for 
the F of irreversible PPs. Various modifications of ZOBM are 
known, expanding its capabilities for the case of F the non-sta-
tionary series. For example, it is stated in [10, 11] that for the 
F of non-stationary series, it is necessary to modify ZOBM (2) 
taking into consideration recurrent formula (3) by selecting 
the parameter h from the beyond-the-limit set from 1 to 2. 
It should be noted that the recurrent formula of exponential 
smoothing (3) can be written in another equivalent form:

  

T T h s Ti i i i= + −( )− −1 1 . 	 (4)

Then expression (4) will resemble the known recurrent 
formula for the optimal discrete Kalman filter for the case 
of observations si. In this case, the difference of (4) from 
the formula of the optimal discrete Kalman filter is that 
the variable gain factor in (4) is replaced by a fixed value 
corresponding to the specified value of h. Therefore, such  
a filter is non-stationary, and representation (4) describes  
a stationary filter. If one selects h equal to the steady value  
of the non-stationary gain of the optimal discrete Kalman fil-
ter, such a filter becomes quasi-optimal. It is known that the 
Kalman filter provides the best accuracy of the assessment. 
At the same time, in the class of linear devices, such a filter 
provides the absolute best estimate. However, this property 
is provided only if the specified conditions are fully complied 
with the real ones.

Applying Kalman’s approach to (4), in this case, means 
that for TS (1) in the ZOBM, the level of the Ti series is de-
termined by a model of the following form:

T Ti i= −1. 	 (5)

That means that (5) sets the current level of TS (1) as  
a random constant. The initial value of the level of the se-
ries T0 in this case obeys the Gaussian distribution with the 
mathematical expectation T0 and the known variance σT0

2.  
If the actual level of the series (1) differs from model (5), the 
Kalman filter (4) will not provide its optimal assessment.  
In this case, following Kalman’s approach, the h parameter  
in (4) should depend on the step number. In this case, the dis-
persion of random noise ni in (1) must be known. Let the 
random noise ni in (1) follow a Gaussian distribution with zero 
mean and fixed variance σ2. Given these conditions, the opti-
mal hoi parameter in (4) at each step will be determined as:

ho
T

i
i=

σ
σ

2

2 , 	 (6)

where σTi
2  is the variance of estimating the level of the series 

at time i.
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It can be assumed that in this case, σTi
2  will be less than 

the value of σ2/i. This means that with an increase in the ob-
servation time or the number of measurements, the accuracy 
of estimating the level of TS tends to zero. However, this 
result is only for a particular model of the level of a series of 
form (5). For the dynamics of the level (arbitrary indicator) 
of the TS of a general nature, this does not hold. In the theory  
of discrete linear filtration by Kalman, a general model de-
scribed by the difference equation is considered:

T T qi i i i i i= +− − − −F G, ,1 1 1 1 	 (7)

where F i,i–1 is the known transient state function; Gi–1 is 
a known non-random sequence; qi–1 is a random uncorrelated 
Gaussian sequence with zero mean and unit variance.

Following Kalman’s approach, in this case, the difference 
equation of observation will be described by TS (1) of the 
discrete states of the medium determined by an arbitrary 
FH [44]. This approach assumes that the random discrete 
sequence ni of noise in (1) is independent of a random dis-
crete sequence in (7) [45] and is an uncorrelated Gaussian 
sequence with zero mean and the specified dispersion σi

2.
Important for F is the recurrent formula that determines 

the gain of the Kalman filter. This is explained by the fact 
that the recurrent gain of the discrete Kalman filter provides 
optimal estimation (7) and accuracy of F for the ZOBM un-
der consideration. For the case of the specified equations  (7) 
and (1), the optimal gain Ki of the discrete Kalman filter is 
non-stationary:

Κ i
i i

i i i

=
+
−

−

η
η σ

,

,

.1

1
2 	 (8)

where ηi i i i i iT T T T, − − −= −( ) −( )( )1 1 1Μ
 

 is the covariance of the 
estimation error for the corresponding discrete steps; M(*) is 
a mathematical expectation operator. It follows from (8) that 
the current value of Ki depends on the corresponding covari-
ance of the current estimation error and the current variance 
in the measurement noise. Thus, for the case of low noise vari-
ance of measurement, the value of the optimal gain is close to 1.  
This means that the single gain extrapolation estimate 
F i i iT, − −1 1



 is corrected by a signal s Ti i i i−( )− −F , ,1 1



 representing  
an error between the extrapolated estimate and the new mea-
surement. At the current variance in measurement noise sig-
nificantly exceeding the current covariance of the estimation 
error, the value of the optimal gain tends to zero. In this case, 
the above considered correction of the extrapolated estimate 
is practically not performed, and the assessment is carried out 
in accordance with the specified equation for the dynamics of 
the level (7). In the case of ZOBM, equation (7) is unknown. 
At the same time, the current variance of the measurement 
noise in (1) is also unknown. Therefore, it is not possible to 
use directly the results of optimal discrete Kalman filtration. 
Under these conditions, it is possible to increase the accuracy 
of F based on the corresponding modification of the ZOBM 
by additionally introducing an equation for the dynamics of 
the level of the studied series. For example, in [19], it is pro-
posed to modify ZOBM, supplementing it with a difference 
equation that takes into consideration both the random level 
of the series and the increment of the series level at adjacent 
discrete moments. It is shown that such a modification of 
ZOBM allows for an order of magnitude increase in the 
accuracy of short-term forecasting of dynamic processes and 
phenomena with a sharp change in dynamics, characteristic, 

for example, of explosions, rapid fires, and sudden failures of 
controlled equipment. In this case, the proposed modification 
is limited to an a priori model of the predicted process. If the 
actual predicted process differs from the a priori model, then 
the F error may be unacceptably large. The h ZOBM pa-
rameter, in this case, remains fixed for different time points. 
Therefore, it is required to be set in advance and thereby 
determine the adaptive capabilities of the proposed modifi-
cation. The constancy of the smoothing parameter over time 
limits the adaptive properties of the modified ZOBM in case 
of difference between the real dynamics of the process and 
that specified a priori.

The application of Kalman’s approach to the modification 
of ZOBM, which differs from [19], is that the model of the 
predicted process is not set a priori, and the h parameter is 
not fixed but is chosen as a variable for various discrete time 
moments. Since the a priori process model is not specified, it 
is not possible to determine the optimal gain Ki of the dis-
crete Kalman filter according to expression (8). In addition, 
it is also not possible to determine Ki since the variance of 
measurement noise in (1) is also unknown and can change 
over time in an arbitrary way. However, the measured value 
is z s Ti i i= − −



1, which contains current information about the 
resulting F error, due to the difference in the real dynamics  
of the level of the series from its assessment and the actual 
noise of the measurement. At the same time, a feature of 
the value z s Ti i i= − −



1 is that it is not possible to identify the 
sources of the appearance of these errors in the resulting 
error. Therefore, the value z s Ti i i= − −



1 can be used to deter-
mine the current value of the optimal gain of the discrete 
Kalman filter in the denominator of (8). However, in the 
case where the current measurement is close to the current 
estimate (forecast) of the level of the TS being studied, and 
the current noise is small, the gain of the discrete Kalman 
filter would increase significantly. That would lead to the 
divergence of the Kalman filter and to an increase in the esti-
mation error and, accordingly, in F [45]. In order to eliminate 
this divergence, it is proposed to determine the current  
gain Ki in accordance with the following expression:

ΡΚ i
iz

=
+
1

1 2 . 	 (9)

Taking into consideration (9), the proposed discrete Kal-
man filter will no longer be optimal but will be suboptimal:

  

T T s Ti i i i i= + −( )− −1 1ΡΚ . 	 (10)

Expression (10) will describe the proposed recurrent 
formula for self-adjusting exponential smoothing in a self-ad-
justing ZOBM. This formula, together with expression (2),  
will generally define the proposed ZOBM for the F of ir-
reversible PPs, obtained through the application of the 
Kalman approach. The proposed ZOBM does not require 
setting an adaptation parameter. In addition, a given model 
allows the F of not only FPs but also time series generated by 
unknown types of irreversible PPs, taking into consideration 
the effect of arbitrary non-stationary noises.

5. 2. Verifying the feasibility of the proposed Brown’s 
self-adjusting predictive model

The operability of the proposed self-adjusting ZOBM for 
the F of PPs was checked on the basis of the experimental TS 
of the recurrence of increments of the vector of air medium 
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states in the chamber during alcohol ignition. As a vector 
of air medium states, a vector was considered, the elements  
of which were determined by three main FHs in the form of 
smoke density, temperature, and carbon monoxide concen-
tration, measured by appropriate sensors [41].

Fig. 1 shows the dynamics in the F of the recurrence of 
increments of the vector of states of the air medium obtained 
on the basis of a self-adjusting ZOBM (auto). For compari-
son, it demonstrates the dynamics in the F of the recurrence 
of the increment vector of the air medium states for the case 
of using the known ZOBM with a fixed smoothing parameter 
from the classical (h = 0.2) and beyond-the-limit (h = 1.2) sets.

Black color indicates the studied TS of the recurrence of 
increments of the vector of states of the air medium. Fig. 2 
shows the dynamics of the forecast error determined by 
the current square of SE (Squared Error) error for the self- 
adjusting ZOBM and ZOBM with a fixed smoothing para
meter from the classical and beyond-the-limit sets.

206 212 230200 i
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0.4
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224

0.4

0.2
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h=0.2

h=1.2
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Fig. 1. Dynamics of forecast of recurrence of increments 	
of vector of states of air medium in a laboratory chamber
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Fig. 2. Dynamics of prediction errors determined 	
by the current error squares for the studied Brown’s models 

of zero order

An illustration of the corresponding dynamics of the fore-
cast error, determined by the absolute error AE (Absolute 
Error), for the considered self-adjusting ZOBM and ZOBM 
with a fixed smoothing parameter from the classical and  
beyond-the-limit sets is shown in Fig. 3.
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Fig. 3. Dynamics of prediction errors determined 	
by the current absolute errors for the Brown’s zero-order 

models under study

Designations and initial data given in Fig. 2, 3 are identi-
cal to the designations and initial data used in Fig. 1.

6. Discussion of results of the feasibility of the proposed 
self-adjusting forecast Brown’s model

The results (Fig. 1) of the experimental study of the dy-
namics of F in the test irreversible process (ignition of alcohol) 
are explained by the advantage of the self-adjusting ZOBM in 
comparison with the considered known modifications given  
in Fig. 1. This is due to the fact that in the proposed model the 
exponential smoothing parameter is non-stationary. For each 
discrete moment, the value of the parameter is determined by 
the current resulting error, depending on the real dynamics of 
the series level and the current noise. Our analysis of curves 
in Fig. 1 reveals that in this case, the best F is provided by 
the proposed ZOBM. The worst F, in this case, is produced  
by ZOBM for the case of a fixed smoothing parameter from the 
classical set. The intermediate quality of F is demonstrated by 
ZOBM for the case of a fixed smoothing parameter from the 
beyond-the-limit set. At the same time, one can see that fore-
cast errors are maximum in the event of a sharp change in the 
dynamics of the TS level. A further increase in the smoothing 
parameter leads to an increase in the F error of the jump-like 
dynamics of the series level. Fig. 2 illustrates quantitative es-
timates of the quality of the forecast in the form of the current 
dynamics of the error, determined by the square of its values 
for the types of ZOBM under consideration. For the proposed 
ZOBM, the current square of the F error for the experimental 
TS under study is more than six orders of magnitude smaller 
compared to the case of choosing a fixed smoothing parameter 
from a beyond-the-limit set. And for the case of abrupt changes 
in the dynamics of the level of the series, on average, it turns 
out to be half as much. It should be noted that it is the abrupt 
change in the dynamics of the studied time series of the recur-
rence of the increments of the state of FH that is a sign of the 
beginning of the ignition of alcohol and, therefore, is important 
for PPs. The use of ZOBM with the smoothing parameter from 
the classical and beyond-the-limit sets for FPs would lead to 
the omission of the beginning of the ignition of alcohol, which 
could lead to the development of a fire [41].

The quantitative estimates of the quality of F in the form 
of the current dynamics of the error, determined by its abso-
lute values for the types of ZOBM under consideration, are 
shown in Fig. 3. At the same time, the nature of the current 
values of the absolute F error for the models under consider-
ation is generally similar to Fig. 2.

Thus, the experimental data testify, in general, to the 
feasibility of the proposed self-adjusting ZOBM. At the same 
time, this model provides high accuracy of FP forecast and 
also allows the F of irreversible PPs with unknown dynamics.  
In addition, the self-adjusting ZOBM does not require a com
plex way to select the smoothing parameter for specific TS 
dynamics. This means that the proposed ZOBM provides an 
accurate and accurate forecast of processes with unknown 
a priori dynamics, including random and chaotic processes.

The limitations of the original study include the fact that 
the results of the test of the self-adjusting ZOBM are given 
for the experimental data on the state of the air environment 
in a laboratory chamber during alcohol ignition. It should 
also be noted that the results obtained were influenced by the 
parameters of the chamber, the size of the ignition site, and 
the placement of the measuring sensors of FHs. Further de-
velopment of this research could involve similar experimen-
tal studies in relation to actual PPs. Such studies would need 
to assess the practical limits of applicability, errors in F, and 
possible limitations of the proposed self-adjusting ZOBM.
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7. Conclusions

1. A zero-order self-adjusting Brown’s model has been 
theoretically substantiated. The model makes it possible to 
predict with high accuracy not only fires but also irreversible 
processes and phenomena of a random and chaotic nature 
under actual conditions. Forecasting such processes and 
phenomena is proposed to be carried out for the time series 
of the indicator in the form of a measure of the recurrence 
of increments of the state of hazardous factors. The essence 
of the devised model is that, based on Kalman’s approach, 
the smoothing parameter is proposed to be set for each time 
moment. Such a parameter is determined depending on the 
resulting current forecast error, taking into consideration the 
real and unknown dynamics of the studied series and noise. 
That has made it possible to abandon the complex selection 
of the smoothing parameter for the specific dynamics of the 
study series. The proposed Brown’s model, unlike the known 
modifications, does not require setting a dynamics model of 
the level of the time series under study, provides negligible 
errors, and efficiency of the forecast.

2. The operability of the zero-order self-adjusting Brown’s 
model was tested on the example of the experimental time se-
ries for the current measure of the recurrence of the increments 
of the state of the air medium in a laboratory chamber during 
alcohol ignition. As quantitative indicators of the quality of 
the forecast error, their current values for the square and ab-
solute values are considered. It has been established that for 
the proposed model, the current square of the prediction error 
for the experimental time series under study is more than six 
orders of magnitude smaller compared to the case of choosing  
a fixed smoothing parameter from a beyond-the-limit set. At 
the same time, the current square of the forecast error for 
abrupt changes in the dynamics of the series level on average is 
half as small as the fixed parameter of the beyond-the-limit set. 
The results obtained indicate, in general, the efficiency of the 
proposed model. At the same time, the model makes it possible 
to predict irreversible  processes and phenomena with un-
known dynamics. In addition, a given model does not require 
the selection of the smoothing parameter, which provides an 
operational and accurate forecast of processes with unknown 
a priori dynamics, including random and chaotic processes.
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