

Рисунок 4 - Зависимость огнетушащей эффективности истинных растворов от их физико-химических свойств: 1 - NH_4NO_3 ; 2 - $(NH_4)_2SO_4$; 3 - NaCl; 4 - $MgCl_2$; 5 - $(NH_4)_2HPO_4$; 6 - $NH_4H_2PO_4$. Концентрация солей 5% мас.

Отклонение полученных результатов по расходу растворов электролитов от заданной поверхности исходной 3-х компонентной (вода + $\Pi AB + BMC$) растворной системы подтверждает предположение о том, что доминирующим фактором прекращения горения растворами электролитов не является охлаждение. Так, в работах [7, 8, 9] указано на ингибирующие свойства радикалов по активности воздействия на активные центры пламени (H^+ и OH^+) в следующем ряду ион-радикалов: $NO_3^{-\bullet} < SO_4^{2-\bullet} < Cl^{-\bullet} < PO_4^{3-\bullet}$. С учётом сказанного авторами сделано предположение о природе процесса тушения очага горения растворами электролитов по механизму ингибирования активных центров пламени, который может даже доминировать над процессом теплопоглащения в процессе тушения твёрдых горючих материалов.

Выводы. На основе проведённого эксперимента установлено, что наибольшей огнетушащей эффективностью обладает раствор дигидрофосфата аммония (NH₄H₂PO₄). Экспериментально показано, что оптимальной концентрацией соли NH₄H₂PO₄ является 5-6% мас. На основе обобщённого анализа результатов исследований зависимости огнетушащей эффективности от физико-химических свойств истинных растворов сделано предположение об ингибировании активных центров пламени при горении целлюлозсодержащих материалов, которое оказывается доминирующим среди возможных