Государственное учреждение образования «Гомельский инженерный институт» МЧС Республики Беларусь

Гомельский филиал Национальной академии наук Беларуси

ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ: ТЕОРИЯ, ПРАКТИКА, ИННОВАЦИИ

МАТЕРИАЛЫ Международной научно-практической конференции

Гомель, 24-25 мая 2012 года

В двух частях Часть 1

Гомель ГГТУ им. П. О. Сухого 2012 УДК 614.8(042.3) ББК 68.9 Ч-76

Организационный комитет конференции: председатель — полковник внутренней службы А. А. Украшнец; заместитель председателя — С. А. Марченко.

Члены организационного комитета: Т. М. Аюбаев

Д-р техн. наук, профессор, член-корреспондент НАН Беларуси Ю. М. Плескачевский; д-р техн. наук, доцент А. Г. Кравцов; канд. техн. наук, доцент И. И. Суторьма; канд. техн. наук, доцент И. М. Вертичих; канд. техн. наук В. Н. Пасовец; канд. техн. наук В. Н. Пасовец; канд. техн. наук Д. А. Коновалова; канд. филол. наук Ю. А. Коновалова; С. Е. Жемчужный; А. Л. Буякевич; Д. Н. Григоренко, Ю. Н. Рубцов; С. В. Качаловская.

Редакционная коллегия: Научный редактор – канд техн. наук, доцент И. И. Суторьма.

> Заместители научного редактора канд. техн. наук, доцент И. М. Вертичих, магистр техн. наук А. М. Кузеро, магистр гуманитар. наук А. Н. Крутолевич, ответственный секретарь — И. В. Стрижак.

Ч-76 териалы Междунар. науч.-практ. конф., Гомель, 24—25 мая 2012 г. В 2 ч. Ч. 1 / Гомел. инженер. ин-т МЧС Респ. Беларусь, Гомел. фил. Нац. акад. наук Беларуси; редкол.: И. И. Суторьма (науч. ред.) [и др.]. — Гомель: ГГТУ им. П. О. Сухого, 2012. — 257 с.

ISBN 978-985-535-070-6.

Материалы посвящены актуальным проблемам предупреждения и ликвидации чрезвычайных ситуаций, рассмотрены вопросы профилактики чрезвычайных ситуаций, тактико-технические мероприятия, связанные с ликвидацией и минимизацией последствий, а также вопросы охраны труда и гражданской защиты.

Для специалистов в области чрезвычайных ситуаций.

УДК 614.8(042.3) ББК 68.9

ISBN 978-985-535-070-6 (4. 1) ISBN 978-985-535-072-0 Оформление, Учреждение образования «Гомельский государственный технический университот имени П. О. Сухого», 2012

СОДЕРЖАНИЕ

Секция 1 ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ ПОЖАРНОЙ ПРОФИЛАКТИКИ И ПРЕДУПРЕЖДЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Авдотьин В. П., Авдотьина Ю. С., Громенко М. И.	
Научно-методические основы снижения риска тепловых	
взрывов на химически опасных объектах	17
Акулич Т. А. О некоторых вопросах подтверждения соответствия	
продукции	18
Алексеева Е. С., Наконечный В. В., Алексеев А. Г. Методики	
прогнозирования последствий аварий на химически опасных	
объектах	19
Андронов В. А., Варивода Е. А. Система экологического	
менеджмента в предупреждении чрезвычайных ситуаций	20
Бабаджанова О. Ф., Павлюк Ю. Е., Сукач Ю. Г. Пожарная	
опасность линейной части магистрального газопровода	21
Баракин А. Г., Зиновский Р. А. Повышение безопасности пуска	
электронагревателя колонны синтеза аммиака	22
Башинський О. И., Гуцуляк Ю. В., Вовк С. Я. Огнезащитные	
покрытия для целлюлозосодержащих изделий	24
Белан С. В., Рыбалова О. В. Качество питьевой воды	
и его влияние на здоровье населения Харьковской области	25
Белоглазов А. И., Макацария Д. Ю. Роль органов внутренних	
дел в организации транспортировки сильнодействующих	
ядовитых веществ	26
Ботян С. С. Пожарная безопасность в общественном	
автобусном транспорте	27
Бранцевич П. Ю., Бобрук Е. В. Диагностика технического	
состояния строительных конструкций	28
Буздалкин К. Н., Чирик И. К. Проблема ингаляционного	
облучения при пожаротушении на территории, загрязненной	
радионуклидами	29
Бурьян А. В., Авдотьин В. П. Анализ риска возникновения	
чрезвычайных ситуаций при хранении и транспортировке	
реакционноспособных конденсированных веществ	30

Проблемы и перспективы пожарной профилактики и предупреждения ЧС

взаимосвязанности и системности, так и понимания их специфики, возможностей использования в практической деятельности и т. д.

На данное время существует несколько уровней моделей для количественного описания процесса распространения выбросов газообразных веществ в атмосфере:

- простые полуэмпирические модели;
- гауссовы модели дисперсии примеси в атмосфере;
- модели распространения, основанные на интегральных законах сохранения;
- модели, построенные на численном решении системы уравнений газодинамики (модели численного моделирования CFD Computational Fluid Dynamics).

Анализ показывает, что использование простых полуэмпирических моделей для прогнозирования последствий распространения химически опасных веществ в атмосфере потеряло актуальность в связи с появлением более соверщенных методик и возможностью использования компьютеров. Допускается применение гауссовых моделей для определения последствий токсичного ингаляционного влияния на людей, а также определения зоны загазованности взрывоопасной примесью. В случае определения зон загазованности взрывоопасной примесью с плотностью выбрасываемого вещества, существенно превышающей плотность воздуха, рекомендуется пользоваться моделями «тяжелого газа», в которых учитываются архимедовы силы и законы сохранения массы и энергии на начальной стадии формирования облака. Наиболее перспективным направлением для прогнозирования последствий взрывных явлений является разработка гибридной методики на основе решения уравнений газодинамики с учетом корреляционных коэффициентов турбулентной диффузии в нестационарных условиях формирования и рассеяния примесей.

УДК 504.064:355/359.07

СИСТЕМА ЭКОЛОГИЧЕСКОГО МЕНЕДЖМЕНТА В ПРЕДУПРЕЖДЕНИИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Андронов В. А., Варивода Е. А., Национальный университет гражданской защиты, г. Харьков, Украина

Современная административно-институциональная структура в области управления по вопросам чрезвычайных ситуаций (ЧС) является преимущественно централизованной с делегированием функций на региональном и местном уровнях.

Анализ статистических данных говорит о необходимости перераспределения функций и ответственности в сфере предупреждения ЧС на объектный уровень путем внедрения современных методов, к которым можно отнести систему экологического менеджмента (СЭМ).

В международной практике СЭМ является эффективным механизмом, направленным на улучшение качества окружающей среды и предупреждения загрязнения, в том числе путем готовности к ЧС и реагированию на них. Внедрение СЭМ особенно актуально для потенциально опасных объектов и объектов повышенной опасности, ЧС на которых приводят к значительным негативным воздействиям на окружающую среду.

СЭМ способна обеспечивать минимизацию риска возникновения ЧС на трех уровнях: организационном – путем внедрения и функционирования системы мероприятий в области готовности к ЧС и реагированию на них; национальном – путем создания дополнения к нормативной базе и компонентам государственной политики в области предупреждения и реагирования на ЧС; международном — путем гармонизации национальных стандартов управления с международными.

Поэтому необходимым является обеспечение регуляторных, институциональных, социально-экономических предпосылок экологизации деятельности предприятий путем внедрения СЭМ.

УДК 614.84

ПОЖАРНАЯ ОПАСНОСТЬ ЛИНЕЙНОЙ ЧАСТИ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА

Бабаджанова О. Ф., Павлюк Ю. Е., Сукач Ю. Г., Львовский государственный университет безопасности жизнедеятельности, Украина

Основной вид транспортировки природного газа — трубопронодный. Газотранспортная система Украины — одна из самых мощных в Европе. Общая длина газопроводов превышает 35 тыс. км.

Магистральные газопроводы являются чрезвычайно взрывоопасными объектами. Реальную опасность для окружающей среды представляют случаи разрушения газопровода с загоранием газа.

Нить магистрального газопровода «Торжок-Долина» длиной 206 км, с условным диаметром 1420 мм, рабочим давлением 7,5 МПа, проложена подземно. От основных газопроводов сделаны ответвления в сторону газораспределительных станций (ГРС) городов Кременец, Лановцы, Почаев.