On the state of activator in Csl(Na) crystals grown under forced mixing of the melt

A.N.Panova, E.L.Vinograd, V.I.Goriletsky, S.P.Korsunova, N.N.Kosinov, A.M.Kudin, K.V.Shakhova

Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 310001 Kharkiv, Ukraine

Received March 16, 1998

Effect of Nal concentration (C) on variations of some Csl(Na) crystal characteristics has been studied. The characteristics considered include: the optical absorption coefficient in the activator band; emission intensities of excitons localized at Na⁺ ions (420 nm) and in the regular lattice (340 nm) in the radioluminescence (RL) at 80 K; yields of stationary RL (²⁴¹Am, 60 keV) (L_{RL}), γ -scintillation (¹³⁷Cs, 662 keV) (L_{γ}) and α -scintillation (²⁴¹Am, 5.9 meV) (L_{α}) for Csl(Na) crystals grown under the forced melt mixing. The number of activator emission centers in those crystals has been shown to increase linearly as C rises up to about 2.2·10⁻² mol.%. The L_{α} value attains a maximum at $C \approx 2.3 \cdot 10^{-2}$ mol.% Nal while those of L_{RL} and L_{γ} , at $C \approx 9 \cdot 10^{-3}$ mol.%. The Nal solubility in Csl has been concluded to be at least 2.2·10⁻² mol.% and thus to exceed substantially the literature data (from $8 \cdot 10^{-3}$ mol.% to $1 \cdot 10^{-2}$ mol.%). Therefore, the maximum L_{γ} value is due to a sufficient number of emission centers at the specified excitation density. The fact that the C value corresponding to the maximum L_{γ} of Csl(Na) is lower than for Csl(Tl) crystals (about $2.5 \cdot 10^{-2}$ mol.% of Tll) is assumed to be caused by a larger size of the distorted lattice volume in the neighborhood of the light Na⁺ cation where the probability of the hole localization is increased.

Исследовано влияние концентрации (C) Nal на изменение: коэффициента оптического поглощения в активаторной полосе; интенсивностей в радиолюминесценции (PJ) при 80 К свечения экситонов, локализованных у Na⁺-ионов (420 нм) и в регулярной решетке (340 нм); выхода стационарной PJI (²⁴¹Am, 60 кeV) (L_{RL}), γ -(¹³⁷Cs, 662 keV) (L_{γ}) и α -(²⁴¹Am, 5.9 meV) (L_{α}) сцинтиляций кристаллов Csl(Na), выращенных в условиях принудительного перемешивания расплава. Показано, что количество активаторных центров свечения в этих кристаллах линейно возрастает с увеличением C до $\approx 2.2 \cdot 10^{-2}$ мол.% Nal. Значение L_{α} достигает максимума при $C \approx 2.3 \cdot 10^{-2}$ мол.% Nal, тогда как L_{RL} и L_{γ} – при $C \approx 9 \cdot 10^{-3}$ мол.% Nal. Сделано заключение, что растворимость Nal в Csl составляет не менее $2.2 \cdot 10^{-2}$ мол.% и существенно выше известной в литературе ($8 \cdot 10^{-3}$ мол.% -1 \cdot 10^{-2} мол.%). Поэтому максимальное значение L_{γ} обусловлено достаточностью количества центров свечения при данной плотности возбуждения. Предполагается, что меньшее значение C, при котором достигается максимальное значение L_{γ} кристаллов Csl(Na) по сравнению с Csl(Tl) (~2.5 \cdot 10^{-2} мол.% Tll), обусловлено большим размером искаженного объема решетки в окружении легкого катиона Na⁺, где вероятность локализации дырок увеличивается.

It follows from thermodynamical calculation of Nal solubility in cesium iodide made basing on the decomposition curve of the solid solution for CsI-Nal system [1] as well as from electron microscopy of decorated cleavage pictures of Csl(Na) crystals grown by Stockbarger technique [2] that the solubility of Nal in Csl at room temperature (T_r)

Functional materials, 5, 4, 1998

480

Fig. 1. Concentration dependence of the optical absorption coefficient for CsI(Na) crystals on 260 nm wavelength.

amounts from $8 \cdot 10^{-3}$ to $1 \cdot 10^{-2}$ moles per cent (from here on, this unit is referred to as %). The solid solution decomposition at T_c resulting in formation of isolated aggregates of about 2.10⁻⁵ cm size occurs during several days [1]. The γ -scintillation yield (L_{γ}) for those crystals attains a maximum also at the activator concentration (C) $8 \cdot 10^{-3} - 1 \cdot 10^{-2} \%$ [3,4]. Therefore, the substantial difference in C values corresponding to the plateau origin of the $L_{\gamma}(C)$ dependence for Csl(Na) crystals and for Csl(Tl) ones (in the last case, $C \sim 2.5 \cdot 10^{-2}$ % of TII [5]) can evidence that the maximum L_{γ} value for CsI(Na) is defined not by the sufficiency of the emission centers number at the specified excitation density but by the limited Nal solubility in Csl. At the same time, according to the concentration dependence of the optical absorption coefficient (K) at the activator band maximum wavelength (244 nm) for Csl(Na) crystals grown by Stockbarger method, the linear K increase up to C about 1.10^{-2} % [6] is changed by its slight rise amounting about 20 to 25 % as C is increased up to $2\cdot 10^{-2}$ % Nal [7]. This fact can point to a higher Nal solubility in Csl as compared to that specified in [1,2]. The reduction of the K elevation rate is accompanied by the increase of the number of non-scintillating activator aggregates. The last fact results in an impairment of the energy resolution (R) even in the initial section of the $L_{\gamma}(C)$ plateau. It has been concluded in [1,7] under account for [8] that the R deterioration is caused by increased fraction of regions enriched in the mentioned activator distribution nonuniformities in the crystal volume; the size of these nonuniformities $(2 \cdot 10^{-5} \text{ cm})$ is three times smaller than the electron free path. Those nonuniformities

arise due to the capturing of Nal admixture by the crystal in the course of growth at a low entry coefficient (0.02) resulting from an insufficient melt mixing as well as to the solid solution decomposition. The last process may be favoured by a great number of the growth defects (dislocations and grain boundaries) that are typical for crystals grown using Stockbarger technique [9].

The growing of Csl(Na) crystals under the forced melt mixing (pulling on a seed while the crucible with the melt and the crystal are roteted in opposite directions) [10] results in a substantial reduction of the activator aggregates number and in 1.5 times improved R [11]. The growth defect density in such crystals is 1.5-2 decimal orders lower than in those grown by Stockbarger method [9]. It is not known, however, how the emission centers number in those crystals changes as C increases. The information on this problem is of importance because it would allow to refine the Nal solubility in CsI and to improve the notions of the scintillation process mechanism in Csl(Na) crystals.

In this connection, the effect of Nal concentration (varied from $4.4 \cdot 10^{-3}$ to $(3 \div 3.6) \cdot 10^{-2}$ %) on the emission centers number has been studied in this work for Csl(Na) crystals grown under the forced melt mixing [10]. Moreover, the concentration dependences of stationary radioluminescence (RL) yield (L_{RL}) , of L_{γ} and of γ -scintillation (L_{RL}) ones have been considered.

The changes in the emission centers number were determined from the character of K(C) dependence in the activator band as well as from the emission intensity ratio for excitons localized at Na⁺ ions (420 nm) and in the regular lattice (340 nm) in the *RL* spectra taken at 80 K.

Samples of the same geometry, namely, 5 mm thick discs of 30 mm in diameter, were used in all experiments. The discs were cut out of large Csl(Na) crystals of 150 mm in dia. and 100-150 mm in height annealed at T_r for different time periods varying from several days to two years. The optical absorption was measured using a SF-26 spectrophotometer, the RL spectra (²⁴¹Am, 60 keV) were taken in a vacuum cryostat using a MDR-2 monochromator and FEU-100 photomultiplier; the excitation source being positioned on the outer cryostat side at an Al window. The standard techniques were used to determine the γ and α -scintillation yield under excitation by

Functional materials, 5, 4, 1998

;ed

wn

111-

 T_r)

198

¹³⁷Cs, 662 keV and ²⁴¹Am, 5.9 meV, respectively. The sodium concentration was determined by the flame photometry.

Since it is difficult to measure K in the activator band maximum (244 nm) at $C \ge$ $1 \cdot 10^{-2}$ % of Nal due to high optical density, we used K values measured on the longwavelength band edge, namely, at 260 nm wavelength (K_{260}) where the transmission of the crystals under study was at least 40 % or more to get information on the K(C) dependence character. The long-wavelength edge of the absorption band has been found to have the same shape for all samples, thus confirming that the K_{260} values were selected properly for the determination of changes in the emission centers number within the specified C range.

In *RL* spectra taken at 80 K, intensities of 420 and 340 nm bands (denoted as I_{420} and I_{340} , respectively) are redistributed in favour of the activator emission (420 nm) as *C* increases. Therefore, the value of $(I_{420}/I_{340})^{1/2}$ ratio should be proportional to the concentration of activator emitting centers. It is just this ratio that we have used to isolate from the total *C* value its fraction that enters the lattice and is responsible for the 420 nm emission.

The measurement results are presented in Figs. 1-3. Note that no effect of the annealing duration at T_r on character of dependences shown in these figures has been observed.

It is seen from Fig. 1 that the K_{260} value for examined crystals increases linearly $(K_{260} = bC \text{ where } b = 43.8 \text{ cm}^{-1}\%)$ as Cincreases up to $2.2 \cdot 10^{-2} \%$ of Nal. At higher C values, K_{260} does not change essentially. The dependence $(I_{420}/I_{340})^{1/2}(C)$

shown in Fig. 2 points that the number of activator emitting centers increases also linearly as C grows up to $2.3 \cdot 10^{-2}$ % Nal.

The obtained $K_{260}(C)$ and $(I_{420}/I_{340})^{1/2}(C)$ dependences evidence that the activator centers responsible for the optical absorption and 420 nm *RL* of the crystals being studied arise from individual Na⁺ ions up to *C* about $2.2 \cdot 10^{-2}$ % Nal. It follows therefrom that the Nal solubility in Csl at T_r is at least $2.2 \cdot 10^{-2}$ % and thus exceeds significantly that found in [1,2]. The above is confirmed by the concentration dependence of α -scintillation yield (Fig.3, curve 1) showing that L_{α} value increases as *C* grows up to about $2.3 \cdot 10^{-2}$ % of Nal.

Unlike the $L_{\alpha}(C)$ dependence, the maximum L_{γ} value for studied crystals (Fig. 3, curve 2) is attained at $C \approx 9.10^{-3}$ % Nal, as well as for crystals grown by Stockbarger method. The $L_{RL}(C)$ dependence is of the same character. This means that the saturation of $L_{\gamma}(C)$ and $L_{RL}(C)$ dependences is due to the sufficiency of the emission centers number at a specified excitation density. In this case, the distance between Na⁺ ions amounts 22a, a being the lattice constant, provided the ions are distributed uniformly. Unlike CsI(Na), the maximum L_{γ} value for Csl(Tl) crystals is attained at C about $2.5 \cdot 10^{-2}$ % of TII, when the distance between Tl^+ ions is 16a.

The difference between activator concentrations corresponding to maximum L_{γ} values for Csl(Na) and Csl(Tl) may be associated with that the number of centers responsible for scintillations is greater in Csl(Na) than in Csl(Tl) (according to the assumption stated in [12]), the activator concentrations are the same in both cases. In

Functional materials, 5, 4, 1998

482

the same time, it can be supposed that the probability of hole localization in the activator ion environment at the crystal interaction with γ -radiation is higher for Csl(Na) than for CsI(TI). The last fact may be due to that the volume of the crystal lattice distorted by the light Na+ cation is greater than in the case of TI⁺ one, since the Na⁺ radius is considerably smaller as compared to TI⁺ and Cs⁺ ions. This assumption is evidenced by the inverse proportional dependence between distance ratio corrersponding to L_{γ} maxima for CsI(Na) and CsI(TI) crystals (22a/16a = 1.37) and effective ionic radii of TI+ (1.59 A) and Na+ (1.18 A) in the CsCl type lattice (1.59/1.18 = 1.35). Spectral and kinetic characteristics of the crystals grown by the technique proposed in [10] will be studied to prove that assumption.

Authors are thankful to L.N.Shpilinskaya for her assistance in measurements of *RL* at 80 K.

References

1. A.N.Panova, K.V.Shakhova, L.N.Shpilinskaya, in: Crystals Obtaining and Properties, No.17, VNIIMonokristallov Publ., Kharkov (1986), p.106 [in Russian].

- 2. G.Kh.Rosenberg, E.F.Chaikovsky, in: Single Crystals and Scintillators, 3, VNIIMonokristallov Publ., Kharkov (1979), p.151 [in Russian].
- A.N.Panova, K.V.Shakhova, N.V.Shiran et al., in: Single Crystals, Scintillators and Organic Luminophors, 5, Part 1, VNIIMonokristallov Publ., Kharkov (1969), p.293 [in Russian].
- 4. G.Breiter, G.Shulz, Phys. Lett., 21, 331 (1967).
- 5. P.Shotanus, R.Kamermans, P.Derenbos, Preprint IEEE Symp., San Francisco, USA (1990).
- A.N.Panova, K.V.Shakhova, L.V.Udovichenko, *Izv. AN SSSR, Ser.Fiz.*, 38, 1244 (1974).
- K.V.Shakhova, Master's Thes. (Chem.), VNII-Monokristallov, Kharkov (1987) [in Russian].
- Yu.A.Tsyrlin, E.P.Mokhir, in: Single Crystals, Scintillators and Organic Luminophors, No.1, VNIIMonokristallov Publ., Kharkov (1967), p.293 [in Russian].
- VB.T.Sotnikov, N.G.Starzhinsky, Ukr. Fiz. Zh., 30, 1681 (1985).
- V.I.Goriletsky, V.A.Nemenov, V.G.Protsenko et al., J. Cryst. Growth, 52, 509 (1981).
- V.I.Goriletsky, A.I.Mitichkin, A.N.Panova et al., in: Abstr. of 8th All-Union Confer. on Methods for Obtaining and Analysis of High Purity Substances, Part 2, Gorky (1988), p. 152 [in Russian].
- 12. A.A.Rogozhin, Abstr. of Master's Thesis (Phys.-Math), Moscow (1980).

Про стан активатора в кристалах Csl(Na), що вирощені в умовах примусового перемішування розплаву

О.Н.Панова, Е.Л.Виноград, В.І.Горилецький, С.П.Корсунова, М.М.Косінов, О.М.Кудін, К.В.Шахова

Досліджено вплив вмісту (C) Nal на зміни коефіцієнту оптичного поглинання в активаторній смузі, інтенсивностей в радіолюмінесценції (РЛ) при 80 К світіння ексітонів, локалізованих біля Na⁺-ioнiв (420 нм) та в регулярній гратці (340 нм), виходу стационарної РЛ (²⁴¹Am, 60 кеV) (L_{RL}), γ -(¹³⁷Cs, 662 кеV) (L_{γ}) и α -(²⁴¹Am, 5.9 meV) (L_{α}) сцинтиляцій для кристалів Csl(Na), вирощених в умовах примусового перемішування розплаву. Показано, що кількість активаторних центрів світіння в цих кристалах лінійно зростає при збільшенні С до $\approx 2.2 \cdot 10^{-2}$ мол.% Nal. Значення L_{α} досягає максимума при $C \approx 2.3 \cdot 10^{-2}$ мол.% Nal, тоді як L_{RL} та L_{γ} – при $C \approx 9 \cdot 10^{-2}$ мол.% Nal. Зроблено висновок, що розчинність Nal в Csl не менше ніж $2.2 \cdot 10^{-2}$ м% і значно вища відомої з літератури ($8 \cdot 10^{-3} - 1 \cdot 10^{-2}$ мол.%). Тому максимальна величина L_{γ} обумовлена достатньою кількістю світіння при даній щільності збудження. Припускається, що менше значення C, при якому досягається максимальна величина L_{γ} кристалів Csl(Na) в порівнянні з Csl(Tl) ($\sim 2.5 \cdot 10^{-2}$ мол.% Tll), зумовлена більшим розміром викривленого об'єму гратки навколо легкого катіону Na⁺, де ймовірність локалізації дірок збільшується.