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Розроблено методи обчислення реку-
рентних діаграм в просторі зі скаляр-
ним добутком, які дозволяють вивча-
ти властивості і особливості вектора 
станів різних за складністю динамічних 
систем природної та соціальної сфери. 
Новий науковий результат полягає в роз-
робці науково-методичного апарату для 
обчислення рекурентних діаграм векто-
рів станів систем у розширених на основі 
скалярного добутку метричних просто-
рах. Запропоновані два методи обчис-
лення рекурентних діаграм для векторів 
станів складних динамічних систем, які 
мають високу інформативність, помір-
ну складність і універсальність щодо роз-
мірності досліджуваного простору ста-
нів. На практиці запропоновані методи 
можуть використовуватися для обчис-
лення і порівняння рекурентних діаграм 
станів досліджуваних систем в метрич-
них просторах різної розмірності без до
даткової нормування. Перевірка праце- 
здатності запропонованих методів про-
ведена на основі експериментальних спо-
стережень концентрацій формальдегіду, 
аміаку та оксиду вуглецю в атмосфе-
рі промислового міста. Встановлено, що 
при значеннях кутового розміру області 
10° і 30° запропонований метод обчислен-
ня рекурентних діаграм має підвищену 
інформативність, меншу складність та 
інваріантність до розмірності простору 
станів. Показано, що методи обчислення 
рекурентних діаграм в просторі зі скаляр-
ним добутком дозволяють використо-
вувати їх при наявності короткочасних 
інтервалів відсутності спостережень. 
Експериментально встановлено, що в ок- 
ремих випадках параметрів результати 
обчислення рекурентних діаграм на основі 
розроблених методів збігаються з резуль-
татами відомих методів. Це свідчить про 
більш загальний характер запропонова-
них методів
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1. Introduction 

The study of complex systems of natural and artificial 
origin suggests that they are based on various nonlinear pro-
cesses. The study of these processes is necessary for deep and 
comprehensive understanding and modeling of such systems. 
Traditional methods [1], based on the concept of linearity, 
have been recently considerably supplemented by different 
methods of the theory of nonlinear dynamics and chaos. 

However, most methods of nonlinear analysis are based either 
on rather long or stationary series of observation data that 
are difficult to get when observing actual natural phenomena 
and systems. In paper [2], it was shown that these methods 
give satisfactory results only for idealized models of actual 
systems. In this regard, there emerged the need to develop 
new methods for non-linear analysis of observation data for 
actual systems. One of such methods is based on the funda-
mental property of actual dissipative systems – recurrence 
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(repeatability) of states. This property implies that in any 
complex dynamic system even a small perturbation can bring 
a system to an unstable state, accompanied by exponential 
deviation from its current state. However, after a while the 
system itself tends to come back to the state that is, in a sense, 
close to the previous one and in this case passes through simi-
lar stages of evolution. This behavior can be visualized in the 
form of relevant recurrence plots (RP), proposed in [3]. The 
popularity of the RP method with researchers is due prima
rily to its applicability to short and stationary data series. At 
present, the number of English-language studies on recurrent 
analysis exceeds several hundred. However, despite this, the 
problem of developing the methods of recurrent analysis is 
far from being solved and remains particularly relevant for 
researching various complex dynamic systems of natural and 
artificial origin. In this regard, one of the most important di-
rections of development of the methods for recurrent analysis 
is further improvement of the methods of RP calculation for 
studying complex dynamic systems of various origins.

2. Literature review and problem statement

RP methods are based only on the results of actual ob-
servations of the states of complex dynamic systems with  
a priori unknown structure and properties. These methods 
are attractive for research into many complex dynamic sys-
tems of natural and artificial origin [4]. It is known that in 
general case the state of dynamic systems is characterized by 
some vector of finite size of their current states that change 
over time. In applications, the state vector is observed dis-
cretely over time. In this case, the observable vector of states 
is considered in the form of coordinates of a certain point 
moving along a trajectory in the corresponding phase space. 
Recurrence of the state of a dynamic system in this case 
means a situation, in which these points appear to be close 
in some ways at different moments of time [5]. In this case, it 
is convenient to display the recurrence of states in the form  
of RP [3]. The RP method, unlike the methods of correlation 
dimensionality [6], makes it possible to visualize the trajecto-
ries of states of complex dynamic systems in a 2-dimensional 
phase space. At that, the features of both the systems and 
turbulent influences are taken into account. In the studied 
systems, RP in a 2-dimensional phase space make it possible 
to identify visually their important properties, such as sto-
chasticity, chaos, periodicity and quasi-periodicity of states, 
as well as the features of evolution and interrelation with 
other systems [3]. Under actual conditions, it is not always 
possible to observe all components of the vector of states of 
the studied dynamical systems. For complex systems, the size 
of the state vector is usually not known in advance and can 
change over time. However, interactions and their number in 
complex systems have such a character that it is possible to 
judge on the dynamics of the whole system even in the case 
when only one variable of the state vector is observed. This 
fact was stated as the Tackens theorem about the dimensio
nality of embedding [7]. However, an analysis of recurrence 
of states for only one observed variable of the vector of states 
without regard to the method of embedding carries more use-
ful information about the properties of the studied complex 
dynamic system than other known methods. That is why this 
method is also widely used in various applications. Paper [8] 
proposes the method for predicting dangerous air pollution 
in industrial cities based on recurrence of states for only one 

variable of the vector of states of general pollution. In this 
case, the values of the observed variable of the states vector 
at fixed moments are considered as elements of a set (scalar 
magnitudes) of the metric space. A usual metric (distance) 
to R (space of all real numbers) is used as a metric. Other 
metrics and corresponding metric space to calculate the 
recurrence of states are not explored in the paper. Paper [3]  
deals with the vectors of states of the system and computa-
tion of states recurrence is carried out in normalized linear 
space, for which the norm of an arbitrary state vector is equal 
to the distance of the corresponding point from the origin 
of coordinates. The calculation of recurrence of the vector 
of states of data on wind velocity in five areas of Nigeria is 
limited to consideration of linear space with the Euclidean 
metric [9]. It is noted that the RP methods in the specified 
space allow identifying the areas and periods of the year, for 
which wind velocity proves to be favorable or unfavorable 
for using alternative sources of electricity generation. Pa-
per [10] focuses on the problem of parameterization of RP 
computation under conditions of potential artifacts in the 
reconstructed state vector. In this case, the study is limited 
to exploration of the RP in the normalized space with the  
Euclidean metric. Other types of metrics are neither consi
dered nor discussed. The procedure of calculation of RP for 
the restored vector of states by one-dimensional measurement 
of the complex dynamics in the Earth’s magnetosphere in the 
scale of geo-space storms is discussed in article [11]. The RP 
is researched in the normalized linear space with maximum 
metric or the Chebyshev metric. Application of normalized 
space with the Euclidean metric to compute the matrices of 
recurrence and distances in neural networks is considered in 
research [12]. Features of calculating RP in normalized spa
ces with the Euclidean metric for analysis of the dynamics of 
states recurrence in biological systems are discussed in [13]. 
Paper [14] proposed to calculate RP in case of irregular data 
observations, an approach based on the use of metric spaces 
with metric in the form of the distance between the relevant 
observed data. It is pointed out that this approach appears 
useful for any method based on measuring distances, for 
example, the correlation method or the Lyapunov indicator 
assessment method. Paper [15] focuses on the exploration of 
multi-dimensional time series in biological systems based on 
the combination of multiple network approach with recurrent 
networks. However, the studies are based on the vector of 
embedding and are limited to its consideration in normalized 
space with the Euclidean metric. Other possible metrics that 
assign other space topologies are considered. Paper [16] ad-
dresses the development of new computational methods for 
analysis of data on drilling to study the specific features of  
a basic dynamic system of the ore body formation. In this case, 
the RP of drilling data are considered in normalized space 
of the general type with arbitrary metric without indicating 
the specific topology of the used space. Computation of RP 
for the vector of states of dynamic systems in the abstract 
phase space (trivial metric) is considered in [3]. The spe-
cific features of calculating RP for localization of transient 
processes are discussed in [17]. It is noted that the norm in 
phase space in principle can be determined by various met-
rics, for example, Euclidean [18] or angular metric [19], as 
well as the L1 norm. However, the influence of these methods 
for determining the norms on the result of RP calculation 
is not considered. Paper [20] addresses studying the RP of 
carbon monoxide concentrations at earlier ignitions in pre
mises. Calculation of RP is limited to the set of the values of  
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carbon monoxide concentrations considered in one-dimen-
sional phase space with the usual metric of distances, as well 
as the relevant power matrix of distances. At this, calculation 
of RP in multidimensional phase spaces with other types of 
metrics is not considered. The methods and devices for data 
analysis in one-dimensional space without using the recur-
rence of states with a view to self-adjusting detection of fires 
are considered in [21]. It is noted that there is a problem de-
termining the necessary threshold of starting [22].

Thus, the known methods for calculating RP are based 
on consideration of the evolution of the vector of states of 
the studied complex dynamical system in linear normalized 
spaces of finite dimensionality, the topological structure of 
which is determined by different types of metrics. The most 
explored are the methods in linear spaces with uniform, 
Euclidean and the maximum metric. At this, each of these 
metrics determines its own topology of the space. That is 
why, the calculation of RP in these spaces has different com-
plexity, and the results turn out to be different. The methods 
for calculating RP in spaces with angular metric are much 
less explored. In addition, despite a widespread use of the 
RP methods to study complex dynamic systems of various 
origins, the known literature does not offer any methods 
for calculating RP in spaces with the improved topological 
structure. For example, an introduction of the additional 
geometric characteristic – scalar product of two vectors – 
can be considered as an improvement of the structure of the 
used metric spaces. In this regard, an important and unre-
solved part of the problem of improving the RP computation 
for studying complex dynamic systems of various origins is 
the development of the methods for their calculation in the 
space with scalar product.

3. The aim and objectives of the study

The aim of this study is to construct methods for com
puting recurrence plots in space with a scalar product to in-
vestigate the properties of various complex dynamic systems 
of natural and technical sphere.

To accomplish the aim, the following tasks have been set:
– to substantiate theoretically the methods for calcula-

tion of recurrence plots for the observed vector of states of  
a dynamic system in the space with scalar product; 

– to verify experimentally the effectiveness of the pro-
posed methods for calculation of recurrence plots using the 
example of observation of actual dynamics of the vector of 
states of hazardous pollutants of urban atmosphere.

4. Theoretical substantiation of the methods  
for calculation of recurrence plots in space with scalar 

product

The basis for calculating the RP of an arbitrary n-dimen-
sional vector of the states of the studied complex dynamic 
system is usually a set Rn of ordered sequences n of real num-
bers. Different metric spaces can be formed based on such 
ordered sequences. If we assume that two arbitrary vectors 
of states of system ХT = (x1, x2,…, xn) and YT = (y1, y2,…, yn), 
the following functionals will determine the known metrics:

d X Y x yi i
i

n

1
1

( , ) ,= −
=
∑ 	 (1)

d X Y x yi i
i

n

2

2

1

1 2( , ) [ ] ,/= −
=
∑ 	 (2)

d X Y x y i ni i3 1 2( , ) max{ ; , ,..., }.= − = 	 (3)

Metrics (1) to (3) are usually referred to as uniform, 
Euclidean and maximum, respectively. The set of all X and Y 
with metric d form the corresponding metric space. It should 
be noted that two different metrics determined on one and 
the same set of elements will form different metric spaces and, 
respectively, different RP. If simple known algebraic relation-
ships between the elements are introduced into the system 
of metric spaces, these spaces become linear spaces. In such 
spaces, it is possible to perform simple algebraic actions, such 
as algebraic actions with the studied vectors X and Y. Let us 
combine the geometric properties of metric and linear spaces 
by determining the real number characterizing the «size» of 
an element in linear space. In this case, this number will de-
termine the norm of vector ||X||, calculated using any mapping 
of linear space onto the actual axis. The norm usually meets 
the following requirements:

а)  X ≥ 0  and X = 0,  if only X = 0;

b)  X Y X Y+ ≤ + ;

c)  α αX X= .

Given these properties, it is possible to show that:

X Y d X Y− = ( , ). 	 (4)

This means that (4) is a metric, since all the conditions 
that apply to the notion of distance are met. Usually these 
are conditions of a nonnegative magnitude, regardless of the 
direction and obeying the rule for the lengths of the sides of 
a triangle. This metric is used in the normalized linear space, 
if it is necessary that the space should be metric. In this case, 
the norm of a vector is equal to the distance from a point to 
the origin of coordinates, and metrics (1) to (3) are obtained 
through the norms. For example, following metric (2), the 
norm of an arbitrary vector X will be determined by ratio:

X xi
i

n

=










=
∑ 2

1

1 2/

. 	 (5)

In the general case, before calculating RP, it is necessary 
to pay attention to the choice of the norm in the correspon
ding space. This is due to the fact that the boundaries of 
the norm have different configurations that affect the form 
of the RP. Calculation of RP on observations of a certain 
m-dimensional vector of states Zi of the studied dynamical 
system at any moment i is carried out in accordance with the 
expression:

R Z Zi j
m

i j,
, ,e e= − −( )Θ  Zi

m∈Ω ,  Z j
m∈Ω ,

i j N S, , , ,..., ,= −0 1 2 1 	 (6)

where Θ(*) is the Heaviside function; e is the dimensionality 
of the neighborhood of a point for vector Zi at moment i in 
the studied space; ||*|| is the norm of the vector in given space; 
NS is the maximum number of observations of the vector of 
states. This means that the RP method (6) shows the tra-
jectories of the vector of states of a system in m-dimensional  
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phase space on a two-dimensional binary matrix of size Ns×Ns 
consisting of unities and zeros. In this case, each element 
of the matrix that is equal to unity at moments i and j will 
determine the recurrence (repeatability) of the vector of the 
states of the studied system. Coordinate axes are correspon
ding discrete moments of observation. Following (6), the RP 
form for the specified observations will depend on the chosen 
norm of the linear normalized space and the size of neighbor-
hood  e. At a fixed value of magnitude e, the uniform norm (1) 
will determine the minimum number of neighboring points, 
the Euclidean norm (2) – the average number of points, and 
the maximum norm (3) – the highest number of points [23].  
In this paper, it is noted that when calculating the RP, the 
maximum norm with metric (3) is usually used. This is ex-
plained by the fact that this norm does not depend on dimen-
sionality of the vector of states (dimensionality of the phase 
space), is the simplest to calculate and makes it possible to 
study RP analytically.

Independence of this norm on dimensionality makes it 
possible to compare directly the RP, calculated for different 
phase spaces and dimensionalities of embedding, while for 
other norms, the comparison of RP requires appropriate 
scaling.

An important parameter when calculating RP is also 
the choice of the size of the neighborhood e. If too small e is 
chosen, there can be almost no recurrent conditions. In this 
case, it is impossible to learn anything about the structure 
of the studied system. On the other hand, if the chosen size 
e is too large, almost every point of the state vector in phase 
space turns out to be recurrent to any other point. This will 
lead to the emergence of a large number of artifacts. That is 
why a compromise is required when choosing the size of the 
neighborhood e. The existence of noise will distort the origi-
nal structure. That is why the desire to reduce its impact on 
the RP may require selection of large size e of neighborhood, 
at which the preservation of the original structure of RP for 
the studied system will be ensured under noisy conditions. 

Currently, only some rules of choosing size e of the neigh-
borhood are known. For example, the size should make up  
a few per cent of the maximum diameter of a phase space [24]. 
At the same time, the size should not exceed 10 % of the 
average or maximum diameter of the phase space. It is pro-
posed in [25] for non-stationary case to select size e so that 
the density of recurrent points should be approximately 1 %. 
Another criterion for choosing e takes into consideration 
that the measurement of the process is a composition of 
an actual signal and some observation noise with standard 
deviation σ [26]. To obtain the results that are similar to 
the absence of noise, we should choose magnitude e of the 
neighborhood size that is five times as much as the standard 
deviation of the observed noise, that is e>5σ. It is noted that 
this criterion is valid for a wide class of observable processes.

Ambiguity of choosing neighborhood size e when cal-
culating RP, complexity and non-uniformity of the known 
metrics and related metric spaces reduce the constructive 
capacities of the methods for studying the states of real dy-
namical systems, described in literature. This gives rise to  
a search and development of constructive methods for stu
dying complex dynamic systems based on RP calculations. 
The proposed approach implies calculating RP in the spaces 
of the improved structure based on the introduction of an 
additional geometric characteristic in the form of scalar 
product of two vectors. Scalar product is mapping of ordered 
pairs of vectors of linear space onto the actual axis. Let this 

mapping be designated as (Zi, Zj). We will assume that map-
ping (Zi, Zj) satisfies the following conditions:

(Zi, Zj) = (Zj, Zi),	 (7)

(aZi+bZk, Zj) = a(Zi , Zj)+b(Zk, Zj),	 (8)

(Zi, Zi) ≥ 0 and (Zi, Zi) = 0, only if Zi = 0.	 (9)

An important consequence of conditions (7) to (9) is that 
the magnitude of:

(Zi, Zi)0.5 = ||Zi||.	 (10)

This means that scalar product is the norm in linear 
space, because it satisfies the above properties for the norm. 
In this case, the validity of the ratio, called Schwarz inequa
lity is important for scalar product:

|(Zi, Zj)|2 ≤ (Zi, Zi)(Zj, Zj).	 (11)

Following (10), a scalar product gives rise to a norm, 
which, in turn, in accordance with (4) gives rise to metric. 
Therefore, the improved space with scalar product becomes 
a metric space, if an appropriate particular metric (1) to (3) 
is introduced. It is proposed to use the resulting improved 
space for calculation of RP. At the same time, scalar product 
can be interpreted as a measure of an angle between the ob-
served vectors of the states of the studied system. To calcu-
late RP, it is proposed to use representation (11), which can 
be written in the equivalent form of:

|(Zi, Zj)| ≤ ||Zi|| ||Zj ||.	 (11)

Then to calculate the RP as a measure of angle Θi, j  
between the corresponding vectors of states Zi and Zj, we will 
choose the magnitude:

S
Z Z

Z Z
i j i j

i j

i j

, ,cos( )
( , )

.= =θ 	 (12)

Normally, the concept of vectors’ orthogonality is used 
in a theoretical study. In the explored case of the RP com-
putation, it is proposed to use magnitude (12) to determine 
the degree of recurrence of the states of dynamical systems. 
Considering (6), in the improved space with scalar product, 
the proposed method for RP calculation is reduced to deter-
mining the magnitude of:

RC Si j
m

i j, ,( ),= −Θ e  Z Zi
m

j
m∈ ∈Ω Ω, ,

i j N S, , , ,..., ,= −0 1 2 1 	 (13)

where e = cos(πα/180), and magnitude α assigns the angular 
size of the neighborhood of recurrence of states in degrees 
for vector Zi at moment i in the corresponding space. In this 
case, the size e of neighborhood for RP calculation should be 
chosen only according to the condition of permissible angular 
proximity (magnitude α) of observed vectors of states. It is 
not required to take into account the used metric of space 
in this case. Magnitudes (12) and (13) do not depend on 
dimensionality and the length of vectors of states observed 
at different moments either. Complete coincidence of these 
vectors (magnitude α = 0°) corresponds to magnitude Si, j = 1. 



Mathematics and cybernetics – applied aspects

41

That is why the size e of neighborhood (magnitude α) when 
calculating the recurrence of the studied vectors of states 
will be determined by the specified region of proximity Si, j  
to unity (magnitude α = 0°).

A possible modification of the 
method for RP calculation (13) can 
be the replacement of magnitude Si, j 
with some magnitude C Z Zi j i j, ( ).= T  
Magnitude Ci, j is the scalar pro
duct of the corresponding vectors, 
which takes into consideration not 
only their angular differences but 
also the length of the vectors. In 
this case, Ci, j is the length-angular 
identifier of the difference of cor-
responding vectors of states. Given 
this, the modified method for the 
RP calculation is reduced to deter-
mining the magnitude of:

RC Ci j
m

i j1 , ,( ),= −Θ e  Z Zi
m

j
m∈ ∈Ω Ω, ,  

i j N S, , , ,...,= −0 1 2 1 .	 (14)

In the modified method (14), size e of the neighborhood 
for RP calculation can be an arbitrary fixed number. If  
in (14) we calculate the square root instead of Ci, j from scalar 
product the difference between the corresponding vectors of 
states, the ratio (14) will enable calculating the RP, similar 
to method (6) when using the Euclidean metric of space. In 
this case, it is important that the Euclidean metric should not  
be used in the computation of RP.

5. Experimental verification of efficiency of the proposed 
methods for computing recurrence plots

Verification of the efficiency of the proposed methods 
for RP calculation was based on the experimental data of 
the actual dynamics of the vector of states of hazardous gas 
pollutants of the urban atmosphere. The main sources of pol-
lution of the atmosphere are vehicles [27], fires [28, 29] and 
accidents on the sites of critical infrastructure [30].

As it is known, global chemical pollution of the atmo-
sphere causes the greenhouse effect, acid rains [31] and 
pollution of aquatic layers [32]. Formaldehyde, ammonia and 
carbon monoxide were chosen as specific studied components 
of the vector of states of atmospheric pollution. The proce-
dure of the experiment was described in detail in [33].

The interval of the experiment lasting from 01:00 of  
May, 1, 2018 (i = 480) till 01:00 of May, 15, 2018 (i = 540) was 
chosen as the studied one. The RP (6) in spaces with dif
ferent metrics (1) to (3) for the fixed magnitude e, equal to  
4 conditional units was assessed on this interval. The speci-
fied RP (6) for the vector of states of pollution, the compo-
nents of which were normalized relative to the corresponding 
daily average maximum admissible concentrations are shown 
in Fig. 1 as an example.

As an illustration, Fig. 2 shows the form of RP (13) for 
the studied vector of states of air pollution on the same test 
interval, but calculated in the proposed space with scalar 
product for cases if α = 30° and α = 10°.

The RP for the studied vector of states of the atmosphe
ric pollution on the studied time interval, but calculated in 

accordance with the modified method (14), are shown in  
Fig. 3. The data in Fig. 3 correspond to fixed magnitude e 
equal to 4 conditional units.

Then, the proposed methods for RP calculation in the 
space with scalar product (13) and (14) were compared with 
the known method for RP calculation (6).

The results of comparison for the studied experimental 
data on pollution are presented in the form of the corre-
sponding RP in Fig. 4.

To do this, arbitrary norm ||Zi–Zj||, used in the known 
method (6), was represented following (10), instead of  
Si, j in method (13) or Ci, j in method (14) through  
equivalent scalar product ( ) ( )Z Z Z Zi j i j− −T  of the dif- 
ference of the corresponding vectors of the states of pollu-
tion. In this case, the RP in Fig. 4 corresponds to magnitude 
of neighborhood e = 4.
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Fig. 1. RP of the studied vector of states of atmospheric air pollution on the test 
observation interval for metrics: a – d1; b – d2; c – d3
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Fig. 2. RP of the studied vector of states 	
of atmospheric air pollution on the test interval in 	

the space with scalar product for different values of α : 	
а – 30°; b – 10°
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pollution on the test interval in the space with scalar product 

in case when the norm in (6) is represented 	
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6. Discussion of results of experimental verification of  
the proposed methods for computing recurrence plots

Results of experimental verification of the proposed 
methods for the RP calculation in general indicate their 
functionality. Thus, for example, for the test interval of ob-
servation of the vector of states of pollution, calculated for 
known metrics (1) to (3), the RP and those presented in 
Fig. 1, are not the same. This fact does not contradict the 
known information that the metric of space affects the RP 
form. That is why the type of metric of space determines the 
corresponding form of the RP. According to Fig. 1, at the 
same size e = 4 of the neighborhood of the point for vector Zi, 
a uniform metric (1) is the most informative. The maximum 
metric (3) should be considered less informative. Euclidean 
metric (2) occupies an intermediate position. At the same 
time, all the metrics (1) to (3) identify laminar states (ver-
tical and horizontal sets of black dots) in the polluted atmo-
sphere almost in the same way. On the interval between 500 
and 510 counts, the vertical line of black dots corresponds to 
dangerous concentration of the studied contaminants that 
do not disperse in the atmosphere. The totality of white dots 
on this line characterizes a short-term loss of stability of the 
state of atmospheric processes with subsequent transition to 
the laminar state. The metrics have different computation 
complexity. In this case, only the maximum metric among the 
studied metrics is not dependent on dimensionality of space 
and makes it possible to compare the RP in spaces of different 
dimensionality without their prior normalizing.

Analysis of the RP of the vector of states of atmospheric 
pollution on the test interval in the space with scalar product 
for different values α of angular size of the region of recur-
rence of states, in general, indicates the functionality of the 
proposed method. In addition, this method is more informa-
tive than the method of maximum metric, less complex and 
does not depend on dimensionality of spaces of RP calcula-
tion. The method makes it possible to examine and compare 
the RP in spaces of different dimensionality without their 
prior normalizing.

The illustration of RP (Fig. 3), which were calculated 
based of the modified method (14) at magnitude e equal to  
4 conditional units, reveals the functionality and the possibi
lity of the practical use of the method. At the same time, this 
method is easier to implement, because it is based only on 
calculating the scalar product of the corresponding vectors. 
In addition, the method for RP computation (14) does not 
depend on dimensionality of the studied vector of states and, 
in this sense, is universal. The implementation of the method 

does not require normalization of RP, which is necessary 
when using the known space metrics. At the same time, the 
proposed methods for RP calculation in space with scalar 
product possess a property that is important for applications. 
These methods can be used in cases of existence of intervals 
of absence of observation that are arbitrary in duration and 
time of occurrence. This property extends the scope of prac-
tical application of the proposed methods. In addition, it is 
not required to develop any additional special procedures 
for taking into account of intervals of data absence when 
calculating the RP.

The results of comparison of the proposed methods for 
calculation of RP in the space with scalar product and the 
known method (6) based of the calculation of arbitrary norm 
||Zi–Zj|| of the difference of corresponding vectors by calcula-
tion of scalar product ( ) ( )Z Z Z Zi j i j− −T , are shown in Fig. 4.  
The analysis of the data in Fig. 4 reveals that in the studied 
case, the RP turn out to be identical. However, the pro-
posed method (14) proves to be easier than the known me
thod (6) and results of the RP calculations are not dependent  
on the size of the vector of states. In this case, the RP in 
Fig. 4, calculated based of the method (14), is identical to 
the RP calculated based of method (6) when using the Eucli- 
dean metric.

In addition, the developed methods have certain limita-
tions. The method (13) cannot be applied in the case of zero 
values of the lengths of the correspondent vectors of states Zi 
and Zj . Such situation can occur if there are specific gaps in 
measurement data, as well as when one of the state vectors 
has the zero length. Besides, this modified method (14) is 
free of such restrictions. It should be considered that an im-
portant limitation to methods (13) and (14) is the fact that 
neighborhood of recurrence for an arbitrary point, characte
rized by state vector Zi at moment i, is represented in the form 
of some two-parameter region. One of the parameters of this 
region is determined by product of the lengths of the con
sidered state vectors, and the other – by angular differences 
of these vectors.

7. Conclusions

1. The methods for calculating RP in space with scalar 
product, which allow exploring the properties and features 
of the vector of states of various by complexity dynamical 
systems of natural, technical, and social areas, were deve
loped. The new scientific result is the development of the 
theoretical framework for the construction of new methods 
for the calculation of the RP of the vectors of states of the 
systems in metric spaces expanded on the basis of the scalar 
product. The proposed methods for RP calculation unlike 
the known methods are highly informative, have relatively 
low complexity, are universal in relation to the size of the 
state vector and can be applied when there are data absence 
intervals. This means that, in practice, such methods can be 
used to calculate and compare the RP of the studied systems 
in spaces of different dimensionality without additional RP 
normalization, which is necessary in the known methods, and 
when there are intervals of missing data.

2. The functionality of the proposed methods for cal-
culating RP was verified on the basis of experimental ob-
servation of concentrations of formaldehyde, ammonia and 
carbon monoxide in the atmosphere of an industrial city 
with the typical configuration of buildings and existence of 
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pollution sources. The obtained results in general prove the 
functionality of the proposed methods. It was established that 
the proposed method for calculation of the RP of the vector 
of experimental states of atmospheric pollution on the test 
interval for angular dimensions α of the region of recurrence 
of states that are equal to 10° and 30° is more informative in 
comparison with the method of maximum metric. At the same 
time, the proposed method is less complex, as well as invariant 

to dimensionality of the space of states. It was proved that the 
proposed methods for calculating RP in the space with scalar 
product make it possible to use them when there are short-
time intervals of the absence of observation. It was experi-
mentally determined that in particular cases the results of the 
RP calculations based of the proposed methods coincide with 
results of the known methods. This indicates a more general 
nature of the developed methods for the RP calculation.
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